
毫不费力地使用一个命令运行LLM后端,API,前端和服务。
Harbor是一个容器化的LLM工具包,可让您运行LLM和其他服务。它由一个CLI和一个伴随应用程序组成,可让您轻松管理和运行AI服务。

打开webui⦁︎comfyui⦁︎librechat⦁︎huggingface chatui to lobe聊天⦁︎hollama⦁︎
ollama⦁︎llama.cpp⦁︎vllm⦁︎tabbyapi⦁︎aphrodite Engine⦁︎mistral.rs⦁︎opendeedai-speech⦁︎更快 - 旋转式服务器⦁︎parler⦁︎parler⦁︎parler⦁︎文本生成⦁︎lmdeploy⦁︎lmdeploy⦁︎airlllm⦁ ︎sglang⦁︎ktransformers⦁︎nexa sdk
港口长凳⦁︎港口boost⦁︎searxng⦁︎pleplexiga⦁︎dify dify plandex⦁︎litellm⦁︎langfuse langfuse⦁︎开放口译⦁cmdflared cmdflared cmdh cmdh fabric⦁︎txtai rag t txtai rag textgrad textgrad⦁︎ ︎omnichain⦁︎lm-评估harness⦁︎jupyterlab⦁︎ol1⦁︎openhands ⦁︎litlytics⦁︎repopack⦁︎n8n⦁︎螺栓。新开放webui管道⦁︎qdrant⦁︎k6⦁︎
请参阅服务文档以获取每个文档的简要概述。
# Run Harbor with default services:
# Open WebUI and Ollama
harbor up
# Run Harbor with additional services
# Running SearXNG automatically enables Web RAG in Open WebUI
harbor up searxng
# Run additional/alternative LLM Inference backends
# Open Webui is automatically connected to them.
harbor up llamacpp tgi litellm vllm tabbyapi aphrodite sglang ktransformers
# Run different Frontends
harbor up librechat chatui bionicgpt hollama
# Get a free quality boost with
# built-in optimizing proxy
harbor up boost
# Use FLUX in Open WebUI in one command
harbor up comfyui
# Use custom models for supported backends
harbor llamacpp model https://huggingface.co/user/repo/model.gguf
# Shortcut to HF Hub to find the models
harbor hf find gguf gemma-2
# Use HFDownloader and official HF CLI to download models
harbor hf dl -m google/gemma-2-2b-it -c 10 -s ./hf
harbor hf download google/gemma-2-2b-it
# Where possible, cache is shared between the services
harbor tgi model google/gemma-2-2b-it
harbor vllm model google/gemma-2-2b-it
harbor aphrodite model google/gemma-2-2b-it
harbor tabbyapi model google/gemma-2-2b-it-exl2
harbor mistralrs model google/gemma-2-2b-it
harbor opint model google/gemma-2-2b-it
harbor sglang model google/gemma-2-2b-it
# Convenience tools for docker setup
harbor logs llamacpp
harbor exec llamacpp ./scripts/llama-bench --help
harbor shell vllm
# Tell your shell exactly what you think about it
harbor opint
harbor aider
harbor aichat
harbor cmdh
# Use fabric to LLM-ify your linux pipes
cat ./file.md | harbor fabric --pattern extract_extraordinary_claims | grep " LK99 "
# Access service CLIs without installing them
harbor hf scan-cache
harbor ollama list
# Open services from the CLI
harbor open webui
harbor open llamacpp
# Print yourself a QR to quickly open the
# service on your phone
harbor qr
# Feeling adventurous? Expose your harbor
# to the internet
harbor tunnel
# Config management
harbor config list
harbor config set webui.host.port 8080
# Create and manage config profiles
harbor profile save l370b
harbor profile use default
# Lookup recently used harbor commands
harbor history
# Eject from Harbor into a standalone Docker Compose setup
# Will export related services and variables into a standalone file.
harbor eject searxng llamacpp > docker-compose.harbor.yml
# Run a build-in LLM benchmark with
# your own tasks
harbor bench run
# Gimmick/Fun Area
# Argument scrambling, below commands are all the same as above
# Harbor doesn't care if it's "vllm model" or "model vllm", it'll
# figure it out.
harbor model vllm
harbor vllm model
harbor config get webui.name
harbor get config webui_name
harbor tabbyapi shell
harbor shell tabbyapi
# 50% gimmick, 50% useful
# Ask harbor about itself
harbor how to ping ollama container from the webui ? 在演示中,Harbor App用于启动使用Ollama和Open WebUI服务的默认堆栈。后来,还启动了Searxng,WebUI可以连接到Web抹布。之后,Harbour Boost也开始并自动连接到WebUI,以诱导更多的创意输出。作为最后一步,在Harbor Boost中的klmbr模块的应用程序中调整了Harbor Config,这使LLM的输出无法避免(但对于人类仍无法确定)。
如果您对Docker和Linux管理感到满意 - 您可能不需要港口本身就可以管理当地的LLM环境。但是,您最终也可能达到类似的解决方案。我知道这是事实,因为我在摇摆不定的设置,而没有所有的哨子和铃铛。
Harbor并非被设计为部署解决方案,而是作为当地LLM开发环境的帮助者。这是尝试LLM和相关服务的好起点。
您以后可以从Harbor弹出并在您自己的设置中使用这些服务,或继续使用Harbor作为您自己的配置的基础。
该项目由一个相当大的外壳CLI组成,相当小的.env文件和Enourmous(用于一个存储库)数量的docker-compose文件。
hf , ollama等)harbor eject的奔跑