TTSAudioNormalizer
1.0.0
TTSaudionormalizer是一種專業的TTS音頻預處理工具,可提供全面的音頻分析和標準化處理功能。該工具旨在提高TTS培訓數據質量並確保音頻功能的一致性。
處理流程圖:
Input Audio ➡️ Basic Preprocessing ➡️ Quality Optimization ➡️ Noise Processing ➡️ Quality Check ➡️ Output Audio
重要說明:
from audio_analyzer import AudioAnalyzer
analyzer = AudioAnalyzer ()
results = analyzer . analyze_speaker_directory (
base_dir = "raw_voices" , # Nested folders, i.e., a main folder containing several subfolders (with audio files)
output_dir = "analysis_report" ,
max_workers = 16
)发现 49 个说话人目录
处理说话人: 0%| | 0/49 [00:00<?, ?it/s]
分析说话人: 廉颇
分析音频: 0%| | 0/118 [00:00<?, ?it/s]
分析音频: 25%|██▌ | 30/118 [00:00<00:00, 289.97it/s]
分析音频: 53%|█████▎ | 62/118 [00:00<00:00, 299.46it/s]
分析音频: 78%|███████▊ | 92/118 [00:00<00:00, 298.95it/s]
音频分析报告 说话人: 廉颇:
--------------------------------------------------
分析的音频文件总数: 118
音量统计:
Mean Norm:
mean: 0.053
std: 0.010
min: 0.032
max: 0.082
RMS Amplitude:
mean: 0.089
std: 0.015
min: 0.057
max: 0.131
Max Amplitude:
mean: 0.546
std: 0.123
min: 0.293
max: 0.882
处理说话人: 2%|▏ | 1/49 [00:01<01:03, 1.31s/it]
推荐的target_db值:
1. 保守设置 (保持动态范围): target_db = 0.053
2. 平衡设置 (确保清晰度): target_db = 0.063
3. 安全设置: target_db = -3.000
分析结果已保存到: raw_voices/音频分析报告/廉颇
分析说话人: 小乔
分析音频: 0%| | 0/201 [00:00<?, ?it/s]
分析音频: 14%|█▍ | 28/201 [00:00<00:00, 268.48it/s]
分析音频: 29%|██▉ | 58/201 [00:00<00:00, 283.83it/s]
分析音频: 43%|████▎ | 87/201 [00:00<00:00, 281.59it/s]
分析音频: 60%|█████▉ | 120/201 [00:00<00:00, 297.76it/s]
分析音频: 75%|███████▍ | 150/201 [00:00<00:00, 294.95it/s]
分析音频: 90%|████████▉ | 180/201 [00:00<00:00, 289.50it/s]
音频分析报告 说话人: 小乔:
--------------------------------------------------
分析的音频文件总数: 201
音量统计:
Mean Norm:
mean: 0.052
std: 0.019
min: 0.012
max: 0.135
RMS Amplitude:
mean: 0.086
std: 0.030
min: 0.024
max: 0.209
Max Amplitude:
mean: 0.495
std: 0.143
min: 0.163
max: 0.943
处理说话人: 4%|▍ | 2/49 [00:02<01:09, 1.49s/it]
推荐的target_db值:
1. 保守设置 (保持动态范围): target_db = 0.052
2. 平衡设置 (确保清晰度): target_db = 0.071
3. 安全设置: target_db = -3.000
分析结果已保存到: raw_voices/音频分析报告/小乔
分析说话人: 赵云
分析音频: 0%| | 0/142 [00:00<?, ?it/s]
分析音频: 20%|█▉ | 28/142 [00:00<00:00, 270.67it/s]
分析音频: 42%|████▏ | 60/142 [00:00<00:00, 294.19it/s]
分析音频: 63%|██████▎ | 90/142 [00:00<00:00, 291.33it/s]
分析音频: 85%|████████▍ | 120/142 [00:00<00:00, 283.42it/s]
音频分析报告 说话人: 赵云:
--------------------------------------------------
分析的音频文件总数: 142
音量统计:
Mean Norm:
mean: 0.050
std: 0.019
min: 0.018
max: 0.124
RMS Amplitude:
mean: 0.089
std: 0.031
min: 0.039
max: 0.193
Max Amplitude:
mean: 0.603
std: 0.182
min: 0.339
max: 1.000
处理说话人: 6%|▌ | 3/49 [00:04<01:06, 1.45s/it]
推荐的target_db值:
1. 保守设置 (保持动态范围): target_db = 0.050
2. 平衡设置 (确保清晰度): target_db = 0.070
3. 安全设置: target_db = -3.000
分析结果已保存到: raw_voices/音频分析报告/赵云
...


分層關係:
實際應用:
這些指標共同幫助我們:
該解決方案的關鍵特徵:
用法很簡單:
from tts_audio_normalizer import AudioProcessingParams , TTSAudioNormalizer
# Create parameter object and customize parameters
params = AudioProcessingParams ()
params . noise_reduction_strength = 0.8 # Increase noise reduction intensity
params . target_db = - 3 # Set target volume
# Process single file
#normalizer.normalize_audio("input.wav", "output.wav", params)
# Batch process directory
normalizer . batch_normalize_directory (
input_dir = "./audio_segments" ,
output_dir = "./audio_segments_normalized" ,
params = params ,
max_workers = 4
) # Basic format settings
rate : int = 44100 # Sample rate
channels : int = 1 # Number of channels
output_format : str = 'wav' # Output format
target_db : float = - 3.0 # Target volume # Equalizer settings
equalizer_enabled : bool = True # Enable equalizer
treble_frequency : float = 3000.0 # Treble center (2-8kHz)
mid_frequency : float = 1000.0 # Mid center (250Hz-2kHz)
bass_frequency : float = 100.0 # Bass center (80-250Hz) # Noise processing
subsonic_filter_enabled : bool = True # Subsonic filtering
compression_ratio : float = 2.5 # Compression ratio
threshold_db : float = - 15.0 # Noise threshold | 語音類型 | 推薦參數 |
|---|---|
| 男性 | bass_gain = 2.0,mid_frequency = 1200Hz |
| 女性 | treble_gain = 1.5,bass_gain = 1.5 |
| 孩子 | mid_gain = 1.5,bass_gain = 1.0 |
| 壓縮水平 | 參數組合 |
|---|---|
| 輕度壓縮 | threshold_db = -20,比率= 2,攻擊= 0.3s |
| 中等壓縮 | threshold_db = -25,比率= 3,攻擊= 0.2s |
| 重壓 | threshold_db = -30,比率= 4,攻擊= 0.1s |
| 音質質量目標 | 參數組合 |
|---|---|
| 聲音增強 | Treble = 2.0,低音= 1.0 |
| 清晰的提升 | 高音= 3.0,bass = -1.0 |
| 溫暖的語氣 | Treble = -1.0,Bass = 2.0 |
通過適當的配置和使用此工具,您可以顯著提高TTS培訓數據質量,從而為模型培訓提供更好的基礎數據支持。
微信