
矢量量化庫最初從DeepMind的TensorFlow實現中轉錄,並將其方便地製成包裝。它使用指數移動平均值來更新字典。
VQ已被DeepMind和Openai成功使用,用於高質量的圖像(VQ-VAE-2)和音樂(Jukebox)。
$ pip install vector-quantize-pytorch import torch
from vector_quantize_pytorch import VectorQuantize
vq = VectorQuantize (
dim = 256 ,
codebook_size = 512 , # codebook size
decay = 0.8 , # the exponential moving average decay, lower means the dictionary will change faster
commitment_weight = 1. # the weight on the commitment loss
)
x = torch . randn ( 1 , 1024 , 256 )
quantized , indices , commit_loss = vq ( x ) # (1, 1024, 256), (1, 1024), (1) 本文建議使用多個矢量量化器遞歸量化波形的殘差。您可以將其與ResidualVQ類和一個額外的初始化參數一起使用。
import torch
from vector_quantize_pytorch import ResidualVQ
residual_vq = ResidualVQ (
dim = 256 ,
num_quantizers = 8 , # specify number of quantizers
codebook_size = 1024 , # codebook size
)
x = torch . randn ( 1 , 1024 , 256 )
quantized , indices , commit_loss = residual_vq ( x )
print ( quantized . shape , indices . shape , commit_loss . shape )
# (1, 1024, 256), (1, 1024, 8), (1, 8)
# if you need all the codes across the quantization layers, just pass return_all_codes = True
quantized , indices , commit_loss , all_codes = residual_vq ( x , return_all_codes = True )
# (8, 1, 1024, 256)此外,本文使用殘差VQ來構建RQ-VAE,以生成具有更多壓縮代碼的高分辨率圖像。
他們進行了兩個修改。首先是在所有量詞中共享代碼簿。第二個是隨機採樣代碼,而不是總是採取最接近的匹配。您可以將這兩個功能與兩個額外的關鍵字參數一起使用。
import torch
from vector_quantize_pytorch import ResidualVQ
residual_vq = ResidualVQ (
dim = 256 ,
num_quantizers = 8 ,
codebook_size = 1024 ,
stochastic_sample_codes = True ,
sample_codebook_temp = 0.1 , # temperature for stochastically sampling codes, 0 would be equivalent to non-stochastic
shared_codebook = True # whether to share the codebooks for all quantizers or not
)
x = torch . randn ( 1 , 1024 , 256 )
quantized , indices , commit_loss = residual_vq ( x )
# (1, 1024, 256), (1, 1024, 8), (1, 8)最近的一篇論文進一步提議在特徵維度組上進行殘留VQ,在使用較少的代碼簿時顯示出與Encodec的等效結果。您可以通過導入GroupedResidualVQ來使用它
import torch
from vector_quantize_pytorch import GroupedResidualVQ
residual_vq = GroupedResidualVQ (
dim = 256 ,
num_quantizers = 8 , # specify number of quantizers
groups = 2 ,
codebook_size = 1024 , # codebook size
)
x = torch . randn ( 1 , 1024 , 256 )
quantized , indices , commit_loss = residual_vq ( x )
# (1, 1024, 256), (2, 1, 1024, 8), (2, 1, 8) Soundstream論文提出,應該由第一批的Kmeans Centroid初始化代碼書。您可以ResidualVQ一個標誌kmeans_init = True VectorQuantize打開此功能
import torch
from vector_quantize_pytorch import ResidualVQ
residual_vq = ResidualVQ (
dim = 256 ,
codebook_size = 256 ,
num_quantizers = 4 ,
kmeans_init = True , # set to True
kmeans_iters = 10 # number of kmeans iterations to calculate the centroids for the codebook on init
)
x = torch . randn ( 1 , 1024 , 256 )
quantized , indices , commit_loss = residual_vq ( x )
# (1, 1024, 256), (1, 1024, 4), (1, 4) 傳統上,VQ-VAE是通過直通估算器(Ste)進行訓練的。在向後傳遞期間,梯度圍繞VQ層而不是通過它流動。旋轉技巧紙提出了通過VQ層轉換梯度的,因此將輸入矢量和量化輸出之間的相對角度和幅度編碼為梯度。您可以在VectorQuantize類中使用rotation_trick=True/False啟用或禁用此功能。
from vector_quantize_pytorch import VectorQuantize
vq_layer = VectorQuantize (
dim = 256 ,
codebook_size = 256 ,
rotation_trick = True , # Set to False to use the STE gradient estimator or True to use the rotation trick.
)該存儲庫將包含一些從各種論文到戰鬥“死”代碼書條目的技術,這是使用向量量化器時常見的問題。
改進的VQGAN論文建議將代碼手冊保持在較低的維度中。量化後,在投影回到高維之前,將對編碼器值投射下來。您可以使用codebook_dim Hypergarameter設置此設置。
import torch
from vector_quantize_pytorch import VectorQuantize
vq = VectorQuantize (
dim = 256 ,
codebook_size = 256 ,
codebook_dim = 16 # paper proposes setting this to 32 or as low as 8 to increase codebook usage
)
x = torch . randn ( 1 , 1024 , 256 )
quantized , indices , commit_loss = vq ( x )
# (1, 1024, 256), (1, 1024), (1,)改進的VQGAN紙還建議L2標準化代碼和編碼向量,該代碼歸結為使用餘弦相似性。他們聲稱在球體上執行向量會導致代碼使用和下游重建的改進。您可以通過設置use_cosine_sim = True來打開此操作
import torch
from vector_quantize_pytorch import VectorQuantize
vq = VectorQuantize (
dim = 256 ,
codebook_size = 256 ,
use_cosine_sim = True # set this to True
)
x = torch . randn ( 1 , 1024 , 256 )
quantized , indices , commit_loss = vq ( x )
# (1, 1024, 256), (1, 1024), (1,)最後,Soundstream Paper具有一個方案,它們可以用當前批處理的隨機選擇向量替換具有低於一定閾值的代碼。您可以使用threshold_ema_dead_code關鍵字設置此閾值。
import torch
from vector_quantize_pytorch import VectorQuantize
vq = VectorQuantize (
dim = 256 ,
codebook_size = 512 ,
threshold_ema_dead_code = 2 # should actively replace any codes that have an exponential moving average cluster size less than 2
)
x = torch . randn ( 1 , 1024 , 256 )
quantized , indices , commit_loss = vq ( x )
# (1, 1024, 256), (1, 1024), (1,)VQ-VAE / VQ-GAN正在迅速越來越受歡迎。最近的一篇論文提出,在圖像上使用矢量量化時,執行代碼本為正交導致離散代碼的翻譯等效性,從而導致下游文本的大量改進到圖像生成任務。
您可以通過簡單地將orthogonal_reg_weight設置為大於0來使用此功能,在這種情況下,正交正則化將添加到該模塊輸出的輔助損耗中。
import torch
from vector_quantize_pytorch import VectorQuantize
vq = VectorQuantize (
dim = 256 ,
codebook_size = 256 ,
accept_image_fmap = True , # set this true to be able to pass in an image feature map
orthogonal_reg_weight = 10 , # in paper, they recommended a value of 10
orthogonal_reg_max_codes = 128 , # this would randomly sample from the codebook for the orthogonal regularization loss, for limiting memory usage
orthogonal_reg_active_codes_only = False # set this to True if you have a very large codebook, and would only like to enforce the loss on the activated codes per batch
)
img_fmap = torch . randn ( 1 , 256 , 32 , 32 )
quantized , indices , loss = vq ( img_fmap ) # (1, 256, 32, 32), (1, 32, 32), (1,)
# loss now contains the orthogonal regularization loss with the weight as assigned有許多論文提出了具有多頭方法的離散潛在表示的變體(每個功能多個代碼)。我決定提供一種變體,其中使用相同的代碼簿在輸入head數時量化量化。
您還可以使用NWT紙的更驗證的方法(模式)
import torch
from vector_quantize_pytorch import VectorQuantize
vq = VectorQuantize (
dim = 256 ,
codebook_dim = 32 , # a number of papers have shown smaller codebook dimension to be acceptable
heads = 8 , # number of heads to vector quantize, codebook shared across all heads
separate_codebook_per_head = True , # whether to have a separate codebook per head. False would mean 1 shared codebook
codebook_size = 8196 ,
accept_image_fmap = True
)
img_fmap = torch . randn ( 1 , 256 , 32 , 32 )
quantized , indices , loss = vq ( img_fmap )
# (1, 256, 32, 32), (1, 32, 32, 8), (1,)本文首先建議使用隨機投影量化量化器進行掩蓋語音建模,其中信號用隨機初始化的矩陣投影,然後與隨機的初始化代碼簿進行匹配。因此,一個人不需要學習量化器。 Google的通用語音模型使用了這項技術來實現SOTA進行語音到文本建模。
USM進一步建議使用多個代碼簿,以及具有多柔軟目標的蒙版語音建模。您可以通過將num_codebooks設置為大於1來輕鬆執行此操作
import torch
from vector_quantize_pytorch import RandomProjectionQuantizer
quantizer = RandomProjectionQuantizer (
dim = 512 , # input dimensions
num_codebooks = 16 , # in USM, they used up to 16 for 5% gain
codebook_dim = 256 , # codebook dimension
codebook_size = 1024 # codebook size
)
x = torch . randn ( 1 , 1024 , 512 )
indices = quantizer ( x )
# (1, 1024, 16)該存儲庫還應在多進程設置中自動同步代碼簿。如果不是某種程度上,請打開一個問題。您可以通過設置sync_codebook = True | False

新的ICLR 2025論文提出了一個方案,該方案被凍結了,並且代碼是通過線性投影隱式生成的。作者聲稱此設置會導致較少的代碼簿崩潰,並且更容易收斂。我發現,當與Fifty等人的旋轉技巧配對時,它的性能甚至更好,並將線性投影擴展到一個小層MLP。您可以嘗試進行試驗
更新:聽到不同的結果
import torch
from vector_quantize_pytorch import SimVQ
sim_vq = SimVQ (
dim = 512 ,
codebook_size = 1024 ,
rotation_trick = True # use rotation trick from Fifty et al.
)
x = torch . randn ( 1 , 1024 , 512 )
quantized , indices , commit_loss = sim_vq ( x )
assert x . shape == quantized . shape
assert torch . allclose ( quantized , sim_vq . indices_to_codes ( indices ), atol = 1e-6 )對於殘留的味道,只需進口ResidualSimVQ即
import torch
from vector_quantize_pytorch import ResidualSimVQ
residual_sim_vq = ResidualSimVQ (
dim = 512 ,
num_quantizers = 4 ,
codebook_size = 1024 ,
rotation_trick = True # use rotation trick from Fifty et al.
)
x = torch . randn ( 1 , 1024 , 512 )
quantized , indices , commit_loss = residual_sim_vq ( x )
assert x . shape == quantized . shape
assert torch . allclose ( quantized , residual_sim_vq . get_output_from_indices ( indices ), atol = 1e-6 )
| VQ | FSQ | |
|---|---|---|
| 量化 | argmin_c || ZC || | 圓(f(z)) |
| 梯度 | 直接通過估計(Ste) | Ste |
| 輔助損失 | 承諾,代碼書,熵損失,... | N/A。 |
| 技巧 | ema在代碼簿上,代碼簿拆分,預測,... | N/A。 |
| 參數 | 代碼本 | N/A。 |
Google DeepMind的這項工作旨在極大地簡化用於生成建模,消除承諾損失的需求,EMA更新代碼書的需求以及解決CodeBook倒塌或利用不足的問題的方式。他們只需直接通過梯度將每個標量圍成離散的水平。這些代碼變成了HyperCube中的統一點。
感謝@sekstini在記錄時間內對此實現進行移植!
import torch
from vector_quantize_pytorch import FSQ
quantizer = FSQ (
levels = [ 8 , 5 , 5 , 5 ]
)
x = torch . randn ( 1 , 1024 , 4 ) # 4 since there are 4 levels
xhat , indices = quantizer ( x )
# (1, 1024, 4), (1, 1024)
assert torch . all ( xhat == quantizer . indices_to_codes ( indices ))即興剩餘的FSQ,以嘗試改進音頻編碼。
榮譽歸@sekstini最初在這裡構成這個想法
import torch
from vector_quantize_pytorch import ResidualFSQ
residual_fsq = ResidualFSQ (
dim = 256 ,
levels = [ 8 , 5 , 5 , 3 ],
num_quantizers = 8
)
x = torch . randn ( 1 , 1024 , 256 )
residual_fsq . eval ()
quantized , indices = residual_fsq ( x )
# (1, 1024, 256), (1, 1024, 8)
quantized_out = residual_fsq . get_output_from_indices ( indices )
# (1, 1024, 256)
assert torch . all ( quantized == quantized_out )
Magvit背後的研究團隊發布了新的SOTA結果,用於生成視頻建模。 V1和V2之間的核心變化包括一種新型的量化,無查找的量化(LFQ),該量化完全消除了代碼簿並完全嵌入查找。
本文提出了使用獨立二進制潛在的簡單LFQ量化器。存在LFQ的其他實現。但是,該團隊表明,具有LFQ的MAGVIT-V2在Imagenet基准上有了顯著改善。 LFQ和2級FSQ之間的差異包括熵正規以及保持承諾損失。
在沒有密碼期的情況下開發更先進的LFQ量化方法可以徹底改變生成建模。
您可以簡單地使用如下。將在magvit2 pytorch港口被狗食
import torch
from vector_quantize_pytorch import LFQ
# you can specify either dim or codebook_size
# if both specified, will be validated against each other
quantizer = LFQ (
codebook_size = 65536 , # codebook size, must be a power of 2
dim = 16 , # this is the input feature dimension, defaults to log2(codebook_size) if not defined
entropy_loss_weight = 0.1 , # how much weight to place on entropy loss
diversity_gamma = 1. # within entropy loss, how much weight to give to diversity of codes, taken from https://arxiv.org/abs/1911.05894
)
image_feats = torch . randn ( 1 , 16 , 32 , 32 )
quantized , indices , entropy_aux_loss = quantizer ( image_feats , inv_temperature = 100. ) # you may want to experiment with temperature
# (1, 16, 32, 32), (1, 32, 32), ()
assert ( quantized == quantizer . indices_to_codes ( indices )). all ()您還可以將視頻功能傳遞為(batch, feat, time, height, width)或序列(batch, seq, feat)
import torch
from vector_quantize_pytorch import LFQ
quantizer = LFQ (
codebook_size = 65536 ,
dim = 16 ,
entropy_loss_weight = 0.1 ,
diversity_gamma = 1.
)
seq = torch . randn ( 1 , 32 , 16 )
quantized , * _ = quantizer ( seq )
assert seq . shape == quantized . shape
video_feats = torch . randn ( 1 , 16 , 10 , 32 , 32 )
quantized , * _ = quantizer ( video_feats )
assert video_feats . shape == quantized . shape或支持多個密碼手冊
import torch
from vector_quantize_pytorch import LFQ
quantizer = LFQ (
codebook_size = 4096 ,
dim = 16 ,
num_codebooks = 4 # 4 codebooks, total codebook dimension is log2(4096) * 4
)
image_feats = torch . randn ( 1 , 16 , 32 , 32 )
quantized , indices , entropy_aux_loss = quantizer ( image_feats )
# (1, 16, 32, 32), (1, 32, 32, 4), ()
assert image_feats . shape == quantized . shape
assert ( quantized == quantizer . indices_to_codes ( indices )). all ()簡化的殘留LFQ,以查看是否可以改善音頻壓縮。
import torch
from vector_quantize_pytorch import ResidualLFQ
residual_lfq = ResidualLFQ (
dim = 256 ,
codebook_size = 256 ,
num_quantizers = 8
)
x = torch . randn ( 1 , 1024 , 256 )
residual_lfq . eval ()
quantized , indices , commit_loss = residual_lfq ( x )
# (1, 1024, 256), (1, 1024, 8), (8)
quantized_out = residual_lfq . get_output_from_indices ( indices )
# (1, 1024, 256)
assert torch . all ( quantized == quantized_out )分離對於表示學習至關重要,因為它可以促進可解釋性,概括,改善學習和魯棒性。它符合捕獲數據的有意義和獨立的特徵的目標,從而促進在各種應用程序中更有效地利用學習的表示形式。為了獲得更好的分解,面臨的挑戰是在沒有明確的地面真相信息的情況下刪除數據集中的基本變化。這項工作引入了旨在在有組織的潛在空間內編碼和解碼的關鍵感應偏置。該策略結合了通過為每個維度使用單個可學習的標量代碼簿分配離散的代碼向量來包括離散潛在空間。這種方法使他們的模型能夠有效地超越強大的先驗方法。
請注意,他們必須使用很高的重量衰減來進行本文的結果。
import torch
from vector_quantize_pytorch import LatentQuantize
# you can specify either dim or codebook_size
# if both specified, will be validated against each other
quantizer = LatentQuantize (
levels = [ 5 , 5 , 8 ], # number of levels per codebook dimension
dim = 16 , # input dim
commitment_loss_weight = 0.1 ,
quantization_loss_weight = 0.1 ,
)
image_feats = torch . randn ( 1 , 16 , 32 , 32 )
quantized , indices , loss = quantizer ( image_feats )
# (1, 16, 32, 32), (1, 32, 32), ()
assert image_feats . shape == quantized . shape
assert ( quantized == quantizer . indices_to_codes ( indices )). all ()您還可以將視頻功能傳遞為(batch, feat, time, height, width)或序列(batch, seq, feat)
import torch
from vector_quantize_pytorch import LatentQuantize
quantizer = LatentQuantize (
levels = [ 5 , 5 , 8 ],
dim = 16 ,
commitment_loss_weight = 0.1 ,
quantization_loss_weight = 0.1 ,
)
seq = torch . randn ( 1 , 32 , 16 )
quantized , * _ = quantizer ( seq )
# (1, 32, 16)
video_feats = torch . randn ( 1 , 16 , 10 , 32 , 32 )
quantized , * _ = quantizer ( video_feats )
# (1, 16, 10, 32, 32)或支持多個密碼手冊
import torch
from vector_quantize_pytorch import LatentQuantize
model = LatentQuantize (
levels = [ 4 , 8 , 16 ],
dim = 9 ,
num_codebooks = 3
)
input_tensor = torch . randn ( 2 , 3 , dim )
output_tensor , indices , loss = model ( input_tensor )
# (2, 3, 9), (2, 3, 3), ()
assert output_tensor . shape == input_tensor . shape
assert indices . shape == ( 2 , 3 , num_codebooks )
assert loss . item () >= 0 @misc { oord2018neural ,
title = { Neural Discrete Representation Learning } ,
author = { Aaron van den Oord and Oriol Vinyals and Koray Kavukcuoglu } ,
year = { 2018 } ,
eprint = { 1711.00937 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.LG }
} @misc { zeghidour2021soundstream ,
title = { SoundStream: An End-to-End Neural Audio Codec } ,
author = { Neil Zeghidour and Alejandro Luebs and Ahmed Omran and Jan Skoglund and Marco Tagliasacchi } ,
year = { 2021 } ,
eprint = { 2107.03312 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.SD }
} @inproceedings { anonymous2022vectorquantized ,
title = { Vector-quantized Image Modeling with Improved {VQGAN} } ,
author = { Anonymous } ,
booktitle = { Submitted to The Tenth International Conference on Learning Representations } ,
year = { 2022 } ,
url = { https://openreview.net/forum?id=pfNyExj7z2 } ,
note = { under review }
} @inproceedings { lee2022autoregressive ,
title = { Autoregressive Image Generation using Residual Quantization } ,
author = { Lee, Doyup and Kim, Chiheon and Kim, Saehoon and Cho, Minsu and Han, Wook-Shin } ,
booktitle = { Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition } ,
pages = { 11523--11532 } ,
year = { 2022 }
} @article { Defossez2022HighFN ,
title = { High Fidelity Neural Audio Compression } ,
author = { Alexandre D'efossez and Jade Copet and Gabriel Synnaeve and Yossi Adi } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2210.13438 }
} @inproceedings { Chiu2022SelfsupervisedLW ,
title = { Self-supervised Learning with Random-projection Quantizer for Speech Recognition } ,
author = { Chung-Cheng Chiu and James Qin and Yu Zhang and Jiahui Yu and Yonghui Wu } ,
booktitle = { International Conference on Machine Learning } ,
year = { 2022 }
} @inproceedings { Zhang2023GoogleUS ,
title = { Google USM: Scaling Automatic Speech Recognition Beyond 100 Languages } ,
author = { Yu Zhang and Wei Han and James Qin and Yongqiang Wang and Ankur Bapna and Zhehuai Chen and Nanxin Chen and Bo Li and Vera Axelrod and Gary Wang and Zhong Meng and Ke Hu and Andrew Rosenberg and Rohit Prabhavalkar and Daniel S. Park and Parisa Haghani and Jason Riesa and Ginger Perng and Hagen Soltau and Trevor Strohman and Bhuvana Ramabhadran and Tara N. Sainath and Pedro J. Moreno and Chung-Cheng Chiu and Johan Schalkwyk and Franccoise Beaufays and Yonghui Wu } ,
year = { 2023 }
} @inproceedings { Shen2023NaturalSpeech2L ,
title = { NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot Speech and Singing Synthesizers } ,
author = { Kai Shen and Zeqian Ju and Xu Tan and Yanqing Liu and Yichong Leng and Lei He and Tao Qin and Sheng Zhao and Jiang Bian } ,
year = { 2023 }
} @inproceedings { Yang2023HiFiCodecGV ,
title = { HiFi-Codec: Group-residual Vector quantization for High Fidelity Audio Codec } ,
author = { Dongchao Yang and Songxiang Liu and Rongjie Huang and Jinchuan Tian and Chao Weng and Yuexian Zou } ,
year = { 2023 }
} @inproceedings { huh2023improvedvqste ,
title = { Straightening Out the Straight-Through Estimator: Overcoming Optimization Challenges in Vector Quantized Networks } ,
author = { Huh, Minyoung and Cheung, Brian and Agrawal, Pulkit and Isola, Phillip } ,
booktitle = { International Conference on Machine Learning } ,
year = { 2023 } ,
organization = { PMLR }
} @inproceedings { rogozhnikov2022einops ,
title = { Einops: Clear and Reliable Tensor Manipulations with Einstein-like Notation } ,
author = { Alex Rogozhnikov } ,
booktitle = { International Conference on Learning Representations } ,
year = { 2022 } ,
url = { https://openreview.net/forum?id=oapKSVM2bcj }
} @misc { shin2021translationequivariant ,
title = { Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation } ,
author = { Woncheol Shin and Gyubok Lee and Jiyoung Lee and Joonseok Lee and Edward Choi } ,
year = { 2021 } ,
eprint = { 2112.00384 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
} @misc { mentzer2023finite ,
title = { Finite Scalar Quantization: VQ-VAE Made Simple } ,
author = { Fabian Mentzer and David Minnen and Eirikur Agustsson and Michael Tschannen } ,
year = { 2023 } ,
eprint = { 2309.15505 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
} @misc { yu2023language ,
title = { Language Model Beats Diffusion -- Tokenizer is Key to Visual Generation } ,
author = { Lijun Yu and José Lezama and Nitesh B. Gundavarapu and Luca Versari and Kihyuk Sohn and David Minnen and Yong Cheng and Agrim Gupta and Xiuye Gu and Alexander G. Hauptmann and Boqing Gong and Ming-Hsuan Yang and Irfan Essa and David A. Ross and Lu Jiang } ,
year = { 2023 } ,
eprint = { 2310.05737 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
} @inproceedings { Zhao2024ImageAV ,
title = { Image and Video Tokenization with Binary Spherical Quantization } ,
author = { Yue Zhao and Yuanjun Xiong and Philipp Krahenbuhl } ,
year = { 2024 } ,
url = { https://api.semanticscholar.org/CorpusID:270380237 }
} @misc { hsu2023disentanglement ,
title = { Disentanglement via Latent Quantization } ,
author = { Kyle Hsu and Will Dorrell and James C. R. Whittington and Jiajun Wu and Chelsea Finn } ,
year = { 2023 } ,
eprint = { 2305.18378 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.LG }
} @inproceedings { Irie2023SelfOrganisingND ,
title = { Self-Organising Neural Discrete Representation Learning `a la Kohonen } ,
author = { Kazuki Irie and R'obert Csord'as and J{"u}rgen Schmidhuber } ,
year = { 2023 } ,
url = { https://api.semanticscholar.org/CorpusID:256901024 }
} @article { Huijben2024ResidualQW ,
title = { Residual Quantization with Implicit Neural Codebooks } ,
author = { Iris Huijben and Matthijs Douze and Matthew Muckley and Ruud van Sloun and Jakob Verbeek } ,
journal = { ArXiv } ,
year = { 2024 } ,
volume = { abs/2401.14732 } ,
url = { https://api.semanticscholar.org/CorpusID:267301189 }
} @article { Fifty2024Restructuring ,
title = { Restructuring Vector Quantization with the Rotation Trick } ,
author = { Christopher Fifty, Ronald G. Junkins, Dennis Duan, Aniketh Iyengar, Jerry W. Liu, Ehsan Amid, Sebastian Thrun, Christopher Ré } ,
journal = { ArXiv } ,
year = { 2024 } ,
volume = { abs/2410.06424 } ,
url = { https://api.semanticscholar.org/CorpusID:273229218 }
} @inproceedings { Zhu2024AddressingRC ,
title = { Addressing Representation Collapse in Vector Quantized Models with One Linear Layer } ,
author = { Yongxin Zhu and Bocheng Li and Yifei Xin and Linli Xu } ,
year = { 2024 } ,
url = { https://api.semanticscholar.org/CorpusID:273812459 }
}