TopClus
1.0.0
通过预审计的语言模型表示的潜在空间聚类用于主题发现的源代码,于www 2022发表。
运行代码需要至少一个GPU。
在运行之前,您需要首先通过输入以下命令来安装所需的软件包(建议使用虚拟环境):
pip3 install -r requirements.txt
您还需要在NLTK中下载以下资源:
import nltk
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')
nltk.download('universal_tagset')
TopClus是一种无监督的主题发现方法,它可以在审前的语言模型表示的潜在球形空间中共同建模单词,文档和主题。

输入脚本是src/trainer.py ,命令行参数的含义将在键入时显示
python src/trainer.py -h
主题发现结果将写入results_${dataset} 。
我们提供了两个示例脚本nyt.sh和yelp.sh ,以分别在《纽约时报》和本文中使用的Yelp评论CORPORA上运行主题。您需要首先从datasets/nyt和datasets/yelp下的.tar.gz Tarball文件中提取文本文件。
您可以期望像以下结果一样获得结果(主题ID是随机的):
On New York Times:
Topic 20: months,weeks,days,decades,years,hours,decade,seconds,moments,minutes
Topic 28: weapons,missiles,missile,nuclear,grenades,explosions,explosives,launcher,bombs,bombing
Topic 30: healthcare,medical,medicine,physicians,patients,health,hospitals,bandages,medication,physician
Topic 41: economic,commercially,economy,business,industrial,industry,market,consumer,trade,commerce
Topic 46: senate,senator,congressional,legislators,legislatures,ministry,legislature,minister,ministerial,parliament
Topic 72: government,administration,governments,administrations,mayor,gubernatorial,mayoral,mayors,public,governor
Topic 77: aircraft,airline,airplane,airlines,voyage,airplanes,aviation,planes,spacecraft,flights
Topic 88: baseman,outfielder,baseball,innings,pitchers,softball,inning,basketball,shortstop,pitcher
On Yelp Review:
Topic 1: steamed,roasted,fried,shredded,seasoned,sliced,frozen,baked,canned,glazed
Topic 15: nice,cozy,elegant,polite,charming,relaxing,enjoyable,pleasant,helpful,luxurious
Topic 16: spicy,fresh,creamy,stale,bland,salty,fluffy,greasy,moist,cold
Topic 17: flavor,texture,flavors,taste,quality,smells,tastes,flavour,scent,ingredients
Topic 20: japanese,german,australian,moroccan,russian,greece,italian,greek,asian,
Topic 40: drinks,beers,beer,wine,beverages,alcohol,beverage,vodka,champagne,wines
Topic 55: horrible,terrible,shitty,awful,dreadful,worst,worse,disgusting,filthy,rotten
Topic 75: strawberry,berry,onion,peppers,tomato,onions,potatoes,vegetable,mustard,garlic
潜在文档嵌入将保存到results_${dataset}/latent_doc_emb.pt可用作聚类算法的功能(例如,k-means)。
如果您有地面真相文档标签,则可以通过将文档标签文件和保存的潜在文档嵌入文件传递给src/utils.py中的cluster_eval函数来获得文档群集评估结果。例如:
from src.utils import TopClusUtils
utils = TopClusUtils()
utils.cluster_eval(label_path="datasets/nyt/label_topic.txt", emb_path="results_nyt/latent_doc_emb.pt")
要在新数据集上执行代码,您需要
datasets集下创建一个名为your_dataset的目录。your_dataset下准备一个文本语料库texts.txt (每行)作为主题发现的目标语料库。src/trainer.py (默认值通常是良好的起点)。 如果您发现代码有助于研究,请引用以下论文。
@inproceedings{meng2022topic,
title={Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations},
author={Meng, Yu and Zhang, Yunyi and Huang, Jiaxin and Zhang, Yu and Han, Jiawei},
booktitle={The Web Conference},
year={2022},
}