Numerical_Analysis
1.0.0

该模块是数值分析,数学和计算机科学领域,该模块可以创建,分析和实现算法,以获取涉及连续变量的问题的数值解决方案。这些问题在整个自然科学,社会科学,工程,医学和商业中都会出现。
Pypi,Pepy
PIP从控制台安装此模块
pip install numerical-analysis-aman
将此模块导入您的工作空间
# Import In Python File
from Numerical_Analysis_Aman import < Module >
# =>> _MODULES_
# -> Numerical_Algebra
# -> Numerical_Analysis
# -> Numerical_Integration
# -> Numerical_Interpolation
# Import all
from Numerical_Analysis_Aman import * 目前,这包含4个部分,您可以从下面探索它们,并对所有方法和功能有所了解
该部分包含插值。
x=Numerical_Analysis_Aman.Numerical_Integration(lower,upper,function)
x.Trapazoid(itration=2) Trapazoid方法x.Simpson_13(itration=2) Simpson 1/3x.Simpson_38(itration=2) Simpson 3/8该部分包含具有三种方法的集成方法x = Numerical_Analysis_Aman.Numerical_Analysis(x_0,y_0,x_given,gap,function)
x.Eular( itration = 4 ) eularx.EularModified( itration = 4 ) eularModifiedx.RungaKutta( itration = 4 ) Rungakutta该部分包含具有四个方法的分析方法x=Numerical_Analysis_Aman.Numerical_Interpolation(x_list,y_list,find_value)
x.Langrangian() Langrangianx.Newton_Divided()牛顿分开差异x.Newton_Forward()牛顿前锋x.Newton_Backward()牛顿向后该部分包含具有三种方法的分析方法x=Numerical_Analysis_Aman.Numerical_Algebra(list_1,list_2,list_3)
x.Jacobi(itration=6) Jacobix.Gauss_Seidel(itration=6)高斯Seidelx.Gauss_Seidel_4(list_4,itration=6) 4变量的高斯seidel 示例和示例用于输入以及如何处理
import Numerical_Analysis_Aman as na
x = na . Numerical_Integration ( 2 , 7 , "1/(5*x+3)" )
y = na . Numerical_Analysis ( 0 , 1 , 0.2 , 0.1 , "((x**3)*(math.e**(-2*x))-(2*y))" )
z = na . Numerical_Interpolation ([ 1891 , 1901 , 1911 , 1921 , 1931 ],[ 46 , 66 , 81 , 93 , 101 ], 1925 )
w = na . Numerical_Algebra ([ 10 , 1 , - 1 , 11.19 ],[ 1 , 10 , 1 , 28.08 ],[ - 1 , 1 , 10 , 35.61 ])
# All of them are Initiated at once you can use them individualy as per requirement
# default Itrations - 2
print ( x . Trapazoid ( ))
print ( x . Simpson_13 ( ))
print ( x . Simpson_38 ( ))
# default Itrations - 4
print ( y . Eular ( ))
print ( y . EularModified ( ))
print ( y . RungaKutta ( ))
print ( z . Langrangian ( ))
print ( z . Newton_Divided ( ))
print ( z . Newton_Forward ( ))
print ( z . Newton_Backward ( ))
# default Itrations - 6
print ( w . Jacobi ( ))
print ( w . Gauss_Seidel ( ))
# needed Additional list for 4 variable
# print(w.Gauss_Seidel_4(list_4)) 如果有任何问题,请通过电子邮件[email protected]与我联系
该存储库是根据MIT许可证获得许可的。有关详细信息,请参见许可证。