Deep Learning Experiments
1.0.0
Revised and expanded
| Topic | Note | Video | Code |
|---|---|---|---|
| Overview | - | - | |
| Supervised Learning | - | - | |
| Multilayer Perceptron (MLP) | - | Notebook | |
| Convolutional Neural Network (CNN) | - | Notebook | |
| Recurrent Neural Network (RNN) | - | Notebook | |
| Transformer | - | Notebook | |
| Mamba | - | SimpleMamba Mamba2 |
|
| Optimization | - | - | |
| Regularization | - | - | |
| Detection | - | - | |
| Segmentation | - | SAM2 | |
| Autoencoder (AE) | - | AE & Denoising AE Colorization AE |
|
| Variational Autoencoder (VAE) | - | VAE and CVAE | |
| Generative Adversarial Network (GAN) | - | DCGAN and CGAN | |
| Intro to Large Language Models (LLMs) | - | GPT2-TS-train, GPT2-TS-val | |
| LLM Data and Model | - | GPT2-TS-ft, GPT2-TS-ft-val |
| Topic | Note | Video | Code |
|---|---|---|---|
| Development Environment | - | - | |
| Python | - | - | |
| Numpy | - | - | |
| Einsum | - | Notebook | |
| Einops | - | Notebook | |
| PyTorch | - | - | |
| Gradio | - | Notebook Llama Chat |
|
| Efficiency | - | Code | |
| PyTorch Lightning | - | Notebook | |
| Model Packaging & Serving | - | ONNX Export ONNX Runtime TorchScript & TensorRT PyTriton Yolo Client PyTriton Yolo Server |
|
| Docker | = | - | |
| HuggingFcae | - | - |
Assuming you already have anaconda or venv, install the required python packages to run the experiments in this version.
pip install -r requirements.txt --upgrade
| AI, ML and Deep Learning | Note | Video | Code |
|---|---|---|---|
| Overview | YouTube | - | |
| Toolkit | |||
| Development Environment and Code Editor |
YouTube | - | |
| Python | YouTube | - | |
| Numpy | YouTube | Jupyter | |
| Einsum | YouTube | Jupyter | |
| Einops | YouTube | Jupyter & Jupyter (Audio) |
|
| PyTorch & Timm | YouTube | PyTorch/Timm & Input Jupyter |
|
| Gradio & Hugging Face | YouTube | Jupyter | |
| Weights and Biases | YouTube | Jupyter | |
| Hugging Face Accelerator | Same as W&B | Same as W&B | Jupyter & Python |
| Datasets & Dataloaders | YouTube | Jupyter | |
| Supervised Learning | YouTube | ||
| PyTorch Lightning | YouTube | MNIST & KWS | |
| Keyword Spotting App | cd versions/2022/supervised/python &&python3 kws-infer.py --gui |
||
| Building blocks: MLPs, CNNs, RNNs, Transformers |
|||
| MLP | YouTube | MLP on CIFAR10 | |
| CNN | YouTube | CNN on CIFAR10 | |
| Transformer | YouTube | Transformer on CIFAR10 | |
| Backpropagation | |||
| Optimization | |||
| Regularization | |||
| Unsupervised Learning | Soon | ||
| AutoEncoders | YouTube | AE MNIST Colorization CIFAR10 |
If you find this work useful, please give it a star, fork, or cite:
@misc{atienza2020dl,
title={Deep Learning Lecture Notes},
author={Atienza, Rowel},
year={2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {url{https://github.com/roatienza/Deep-Learning-Experiments}},
}