
requirements.txt安裝。data的文件夾中下載數據。saved文件夾中在下面,我們將展示一條逐步的Pipleline來訓練和評估Roberta檢查點。該示例顯示為“所有”培訓數據集,該數據集包含在火車時(and,or,,不]的所有邏輯運算符。
python process_dataset.py --dataset train_data/all --arch roberta_large_race
我們在比賽中使用了一個填充的羅伯塔檢查站。可以通過config在src/configs/config.yaml上更改模型
python main.py --dataset all --train_dataset all --dev_dataset all --test_dataset all
從上面完成的模型fineTuning中,將<model_ckpt>替換為下面命令中的保存檢查點路徑。
python process_dataset.py --dataset robustlr/logical_contrast/conj_contrast_with_distractors --eval
python main.py --override evaluate --dataset conj_contrast_with_distractors --train_dataset conj_contrast_with_distractors --dev_dataset conj_contrast_with_distractors --test_dataset conj_contrast_with_distractors --ckpt_path <model_ckpt>
python process_dataset.py --dataset robustlr/logical_contrast/disj_contrast_with_distractors --eval
python main.py --override evaluate --dataset disj_contrast_with_distractors --train_dataset disj_contrast_with_distractors --dev_dataset disj_contrast_with_distractors --test_dataset disj_contrast_with_distractors --ckpt_path <model_ckpt>
python process_dataset.py --dataset robustlr/logical_contrast/neg_contrast_with_distractors --eval
python main.py --override evaluate --dataset neg_contrast_with_distractors --train_dataset neg_contrast_with_distractors --dev_dataset neg_contrast_with_distractors --test_dataset neg_contrast_with_distractors --ckpt_path <model_ckpt>
python process_dataset.py --dataset robustlr/logical_equivalence/contrapositive_equiv --eval
python main.py --override evaluate --dataset contrapositive_equiv --train_dataset contrapositive_equiv --dev_dataset contrapositive_equiv --test_dataset contrapositive_equiv --ckpt_path <model_ckpt>
python process_dataset.py --dataset robustlr/logical_equivalence/distributive1_equiv --eval
python main.py --override evaluate --dataset distributive1_equiv --train_dataset distributive1_equiv --dev_dataset distributive1_equiv --test_dataset distributive1_equiv --ckpt_path <model_ckpt>
python process_dataset.py --dataset robustlr/logical_equivalence/distributive2_equiv --eval
python main.py --override evaluate --dataset distributive2_equiv --train_dataset distributive2_equiv --dev_dataset distributive2_equiv --test_dataset distributive2_equiv --ckpt_path <model_ckpt>
有關任何澄清,評論或建議,請創建問題或聯繫Soumya。