
requirements.txt安装。data的文件夹中下载数据。saved文件夹中在下面,我们将展示一条逐步的Pipleline来训练和评估Roberta检查点。该示例显示为“所有”培训数据集,该数据集包含在火车时(and,or,,不]的所有逻辑运算符。
python process_dataset.py --dataset train_data/all --arch roberta_large_race
我们在比赛中使用了一个填充的罗伯塔检查站。可以通过config在src/configs/config.yaml上更改模型
python main.py --dataset all --train_dataset all --dev_dataset all --test_dataset all
从上面完成的模型fineTuning中,将<model_ckpt>替换为下面命令中的保存检查点路径。
python process_dataset.py --dataset robustlr/logical_contrast/conj_contrast_with_distractors --eval
python main.py --override evaluate --dataset conj_contrast_with_distractors --train_dataset conj_contrast_with_distractors --dev_dataset conj_contrast_with_distractors --test_dataset conj_contrast_with_distractors --ckpt_path <model_ckpt>
python process_dataset.py --dataset robustlr/logical_contrast/disj_contrast_with_distractors --eval
python main.py --override evaluate --dataset disj_contrast_with_distractors --train_dataset disj_contrast_with_distractors --dev_dataset disj_contrast_with_distractors --test_dataset disj_contrast_with_distractors --ckpt_path <model_ckpt>
python process_dataset.py --dataset robustlr/logical_contrast/neg_contrast_with_distractors --eval
python main.py --override evaluate --dataset neg_contrast_with_distractors --train_dataset neg_contrast_with_distractors --dev_dataset neg_contrast_with_distractors --test_dataset neg_contrast_with_distractors --ckpt_path <model_ckpt>
python process_dataset.py --dataset robustlr/logical_equivalence/contrapositive_equiv --eval
python main.py --override evaluate --dataset contrapositive_equiv --train_dataset contrapositive_equiv --dev_dataset contrapositive_equiv --test_dataset contrapositive_equiv --ckpt_path <model_ckpt>
python process_dataset.py --dataset robustlr/logical_equivalence/distributive1_equiv --eval
python main.py --override evaluate --dataset distributive1_equiv --train_dataset distributive1_equiv --dev_dataset distributive1_equiv --test_dataset distributive1_equiv --ckpt_path <model_ckpt>
python process_dataset.py --dataset robustlr/logical_equivalence/distributive2_equiv --eval
python main.py --override evaluate --dataset distributive2_equiv --train_dataset distributive2_equiv --dev_dataset distributive2_equiv --test_dataset distributive2_equiv --ckpt_path <model_ckpt>
有关任何澄清,评论或建议,请创建问题或联系Soumya。