from IPython . display import HTML , Image
url = 'http://stratospark.com/demos/food-101/'
el = '<' + 'iframe src="{}"' . format ( url ) + ' width="100%" height=600></iframe>' # prevent notebook render bug
HTML ( el )如果您在Github上閱讀此信息,則演示看起來像這樣。請點擊下面的鏈接以查看我的博客上的實時演示。
Image ( 'demo.jpg' )
可用 @ http://blog.stratospark.com/deep-learning-applied-classification-classification-deep-learning-keras.html
代碼可用 @ https://github.com/stratospark/food-101-keras
更新
卷積神經網絡(CNN)是一種更廣泛的深度學習領域中的技術,一直是計算機視覺應用中的革命力量,尤其是在過去的六個十年左右的時間裡。一個主要用例是圖像分類,例如確定圖片是狗還是貓的圖像。
當然,您不必將自己限制為二進制分類器;如1000類的著名Imagenet數據集所示,CNN可以輕鬆地擴展到數千個不同的類別,用於基準計算機視覺算法性能。
在過去的幾年中,這些尖端技術已經開始為更廣泛的軟件開發社區提供。諸如TensorFlow之類的工業強度軟件包為我們提供了與Google用來編寫嵌入式/移動設備深度學習應用程序的相同構建塊,以使其在雲中的可擴展群集中 -不必將GPU矩陣操作,部分導數梯度和隨機優化器進行撥號。這使得有效的應用程序成為可能。
最重要的是,包括用戶友好的API,例如Keras,它們抽象了一些較低級別的詳細信息,並讓我們專注於快速原型製作深度學習計算圖。就像我們會混合使用樂高積木以獲得理想的結果一樣。
作為我自己的介紹性項目,我選擇使用KERAS隨附的預訓練的圖像分類器,並在我覺得有趣的數據集中重新訓練它。我非常喜歡美味的食物和家庭烹飪,所以那些台詞的東西是開胃的。
在論文中,食物-101 - 帶有隨機森林的挖掘歧視成分,它們引入了食品101數據集。有101種不同類別的食物,每個課程都有1000個標籤圖像可供監督培訓。
我的靈感來自此KERAS博客文章:使用很少的數據構建強大的圖像分類模型,以及在GitHub:Keras-Finetuning上找到的相關腳本。
我最近建立了一個系統,目的是嘗試深度學習。關鍵組件是NVIDIA TITAN X PASCAL,帶有12 GB的內存,96 GB的系統RAM以及12核Intel Core i7。它運行64位Ubuntu 16.04並使用Anaconda Python分佈。不幸的是,除非您有足夠的RAM,否則您將無法在自己的系統上關注此筆記本。將來,我想學習如何以表現方式處理比RAM數據集更大的。如果您有任何想法,請聯繫!
我花了大約1個月的時間在構建這個項目,試圖培訓數十個模型並探索各個領域,例如多處理以增加圖像增強速度。這是筆記本的清理版本,截至2017年1月22日,它包含我最佳性能的模型。
在微調了預先訓練的Google InceptionV3模型之後,我能夠使用每項單個作物在測試集上實現約82.03%的TOP-1精度。每個示例使用10種農作物並以最頻繁的預測類(ES),我能夠達到86.97%的TOP-1準確性和97.42%的TOP-5準確性
其他人已經能夠取得更準確的結果:
實施的!查看:http://blog.stratospark.com/creating-a-deep-learning-ios-app-with-keras-and-tensorflow.html
讓我們導入筆記本其餘部分所需的所有軟件包:
import matplotlib . pyplot as plt
import matplotlib . image as img
import numpy as np
from scipy . misc import imresize
% matplotlib inline
import os
from os import listdir
from os . path import isfile , join
import shutil
import stat
import collections
from collections import defaultdict
from ipywidgets import interact , interactive , fixed
import ipywidgets as widgets
import h5py
from sklearn . model_selection import train_test_split
from keras . utils . np_utils import to_categorical
from keras . applications . inception_v3 import preprocess_input
from keras . models import load_model Using TensorFlow backend.
下載數據集並在筆記本文件夾中提取。在單獨的終端窗口中執行此操作可能會更容易。
# !wget http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz # !tar xzvf food-101.tar.gz讓我們看看這裡有哪種食物:
!l s food - 101 / images apple_pie eggs_benedict onion_rings
baby_back_ribs escargots oysters
baklava falafel pad_thai
beef_carpaccio filet_mignon paella
beef_tartare fish_and_chips pancakes
beet_salad foie_gras panna_cotta
beignets french_fries peking_duck
bibimbap french_onion_soup pho
bread_pudding french_toast pizza
breakfast_burrito fried_calamari pork_chop
bruschetta fried_rice poutine
caesar_salad frozen_yogurt prime_rib
cannoli garlic_bread pulled_pork_sandwich
caprese_salad gnocchi ramen
carrot_cake greek_salad ravioli
ceviche grilled_cheese_sandwich red_velvet_cake
cheesecake grilled_salmon risotto
cheese_plate guacamole samosa
chicken_curry gyoza sashimi
chicken_quesadilla hamburger scallops
chicken_wings hot_and_sour_soup seaweed_salad
chocolate_cake hot_dog shrimp_and_grits
chocolate_mousse huevos_rancheros spaghetti_bolognese
churros hummus spaghetti_carbonara
clam_chowder ice_cream spring_rolls
club_sandwich lasagna steak
crab_cakes lobster_bisque strawberry_shortcake
creme_brulee lobster_roll_sandwich sushi
croque_madame macaroni_and_cheese tacos
cup_cakes macarons takoyaki
deviled_eggs miso_soup tiramisu
donuts mussels tuna_tartare
dumplings nachos waffles
edamame omelette
!l s food - 101 / images / apple_pie / | head - 10 1005649.jpg
1011328.jpg
101251.jpg
1014775.jpg
1026328.jpg
1028787.jpg
1034399.jpg
103801.jpg
1038694.jpg
1043283.jpg
ls: write error: Broken pipe
讓我們看一下每個食物類中的一些隨機圖像。您可以右鍵單擊並在新窗口中打開圖像,或將其保存以以更高的分辨率查看。
root_dir = 'food-101/images/'
rows = 17
cols = 6
fig , ax = plt . subplots ( rows , cols , frameon = False , figsize = ( 15 , 25 ))
fig . suptitle ( 'Random Image from Each Food Class' , fontsize = 20 )
sorted_food_dirs = sorted ( os . listdir ( root_dir ))
for i in range ( rows ):
for j in range ( cols ):
try :
food_dir = sorted_food_dirs [ i * cols + j ]
except :
break
all_files = os . listdir ( os . path . join ( root_dir , food_dir ))
rand_img = np . random . choice ( all_files )
img = plt . imread ( os . path . join ( root_dir , food_dir , rand_img ))
ax [ i ][ j ]. imshow ( img )
ec = ( 0 , .6 , .1 )
fc = ( 0 , .7 , .2 )
ax [ i ][ j ]. text ( 0 , - 20 , food_dir , size = 10 , rotation = 0 ,
ha = "left" , va = "top" ,
bbox = dict ( boxstyle = "round" , ec = ec , fc = fc ))
plt . setp ( ax , xticks = [], yticks = [])
plt . tight_layout ( rect = [ 0 , 0.03 , 1 , 0.95 ])
multiprocessing.Pool池塘將在訓練過程中加速圖像增強。
# Setup multiprocessing pool
# Do this early, as once images are loaded into memory there will be Errno 12
# http://stackoverflow.com/questions/14749897/python-multiprocessing-memory-usage
import multiprocessing as mp
num_processes = 6
pool = mp . Pool ( processes = num_processes )我們需要從類到索引的地圖,反之亦然,以進行適當的標籤編碼和漂亮的打印。
class_to_ix = {}
ix_to_class = {}
with open ( 'food-101/meta/classes.txt' , 'r' ) as txt :
classes = [ l . strip () for l in txt . readlines ()]
class_to_ix = dict ( zip ( classes , range ( len ( classes ))))
ix_to_class = dict ( zip ( range ( len ( classes )), classes ))
class_to_ix = { v : k for k , v in ix_to_class . items ()}
sorted_class_to_ix = collections . OrderedDict ( sorted ( class_to_ix . items ()))Food-101數據集具有提供的火車/測試拆分。我們希望使用此功能將我們的分類性能與其他實現進行比較。
# Only split files if haven't already
if not os . path . isdir ( './food-101/test' ) and not os . path . isdir ( './food-101/train' ):
def copytree ( src , dst , symlinks = False , ignore = None ):
if not os . path . exists ( dst ):
os . makedirs ( dst )
shutil . copystat ( src , dst )
lst = os . listdir ( src )
if ignore :
excl = ignore ( src , lst )
lst = [ x for x in lst if x not in excl ]
for item in lst :
s = os . path . join ( src , item )
d = os . path . join ( dst , item )
if symlinks and os . path . islink ( s ):
if os . path . lexists ( d ):
os . remove ( d )
os . symlink ( os . readlink ( s ), d )
try :
st = os . lstat ( s )
mode = stat . S_IMODE ( st . st_mode )
os . lchmod ( d , mode )
except :
pass # lchmod not available
elif os . path . isdir ( s ):
copytree ( s , d , symlinks , ignore )
else :
shutil . copy2 ( s , d )
def generate_dir_file_map ( path ):
dir_files = defaultdict ( list )
with open ( path , 'r' ) as txt :
files = [ l . strip () for l in txt . readlines ()]
for f in files :
dir_name , id = f . split ( '/' )
dir_files [ dir_name ]. append ( id + '.jpg' )
return dir_files
train_dir_files = generate_dir_file_map ( 'food-101/meta/train.txt' )
test_dir_files = generate_dir_file_map ( 'food-101/meta/test.txt' )
def ignore_train ( d , filenames ):
print ( d )
subdir = d . split ( '/' )[ - 1 ]
to_ignore = train_dir_files [ subdir ]
return to_ignore
def ignore_test ( d , filenames ):
print ( d )
subdir = d . split ( '/' )[ - 1 ]
to_ignore = test_dir_files [ subdir ]
return to_ignore
copytree ( 'food-101/images' , 'food-101/test' , ignore = ignore_train )
copytree ( 'food-101/images' , 'food-101/train' , ignore = ignore_test )
else :
print ( 'Train/Test files already copied into separate folders.' ) Train/Test files already copied into separate folders.
現在,我們準備將訓練和測試圖像加載到內存中。加載所有內容後,將分配大約80 GB的內存。
任何具有小於min_size寬度或長度的圖像都將進行調整。這樣我們就可以在圖像增強過程中服用適當的作物。
% % time
# Load dataset images and resize to meet minimum width and height pixel size
def load_images ( root , min_side = 299 ):
all_imgs = []
all_classes = []
resize_count = 0
invalid_count = 0
for i , subdir in enumerate ( listdir ( root )):
imgs = listdir ( join ( root , subdir ))
class_ix = class_to_ix [ subdir ]
print ( i , class_ix , subdir )
for img_name in imgs :
img_arr = img . imread ( join ( root , subdir , img_name ))
img_arr_rs = img_arr
try :
w , h , _ = img_arr . shape
if w < min_side :
wpercent = ( min_side / float ( w ))
hsize = int (( float ( h ) * float ( wpercent )))
#print('new dims:', min_side, hsize)
img_arr_rs = imresize ( img_arr , ( min_side , hsize ))
resize_count += 1
elif h < min_side :
hpercent = ( min_side / float ( h ))
wsize = int (( float ( w ) * float ( hpercent )))
#print('new dims:', wsize, min_side)
img_arr_rs = imresize ( img_arr , ( wsize , min_side ))
resize_count += 1
all_imgs . append ( img_arr_rs )
all_classes . append ( class_ix )
except :
print ( 'Skipping bad image: ' , subdir , img_name )
invalid_count += 1
print ( len ( all_imgs ), 'images loaded' )
print ( resize_count , 'images resized' )
print ( invalid_count , 'images skipped' )
return np . array ( all_imgs ), np . array ( all_classes )
X_test , y_test = load_images ( 'food-101/test' , min_side = 299 ) 0 41 french_onion_soup
1 99 tuna_tartare
2 2 baklava
3 12 cannoli
4 8 bread_pudding
5 58 ice_cream
6 63 macarons
7 38 fish_and_chips
8 3 beef_carpaccio
9 59 lasagna
10 84 risotto
11 53 hamburger
12 7 bibimbap
13 15 ceviche
14 92 spring_rolls
15 78 poutine
16 76 pizza
17 19 chicken_quesadilla
18 71 paella
19 11 caesar_salad
20 30 deviled_eggs
21 40 french_fries
22 25 club_sandwich
23 77 pork_chop
24 31 donuts
25 93 steak
26 43 fried_calamari
27 52 gyoza
28 20 chicken_wings
29 47 gnocchi
30 46 garlic_bread
31 81 ramen
32 86 sashimi
33 100 waffles
34 60 lobster_bisque
35 23 churros
36 1 baby_back_ribs
37 0 apple_pie
38 27 creme_brulee
39 79 prime_rib
40 54 hot_and_sour_soup
41 55 hot_dog
42 82 ravioli
43 66 nachos
44 85 samosa
45 95 sushi
46 70 pad_thai
47 87 scallops
48 42 french_toast
49 13 caprese_salad
50 21 chocolate_cake
51 83 red_velvet_cake
52 88 seaweed_salad
53 96 tacos
54 16 cheesecake
55 90 spaghetti_bolognese
56 94 strawberry_shortcake
57 64 miso_soup
58 98 tiramisu
59 74 peking_duck
60 17 cheese_plate
61 69 oysters
62 14 carrot_cake
63 6 beignets
64 61 lobster_roll_sandwich
65 45 frozen_yogurt
66 24 clam_chowder
67 9 breakfast_burrito
68 72 pancakes
69 32 dumplings
70 57 hummus
71 10 bruschetta
72 44 fried_rice
73 97 takoyaki
74 50 grilled_salmon
75 4 beef_tartare
76 89 shrimp_and_grits
77 28 croque_madame
78 49 grilled_cheese_sandwich
79 80 pulled_pork_sandwich
80 56 huevos_rancheros
81 35 escargots
82 91 spaghetti_carbonara
83 34 eggs_benedict
84 33 edamame
85 22 chocolate_mousse
86 18 chicken_curry
87 65 mussels
88 36 falafel
89 37 filet_mignon
90 26 crab_cakes
91 48 greek_salad
92 5 beet_salad
93 51 guacamole
94 29 cup_cakes
95 68 onion_rings
96 39 foie_gras
97 67 omelette
98 73 panna_cotta
99 75 pho
100 62 macaroni_and_cheese
25250 images loaded
693 images resized
0 images skipped
CPU times: user 1min 18s, sys: 4.82 s, total: 1min 23s
Wall time: 1min 23s
% % time
X_train , y_train = load_images ( 'food-101/train' , min_side = 299 ) 0 41 french_onion_soup
1 99 tuna_tartare
2 2 baklava
3 12 cannoli
4 8 bread_pudding
Skipping bad image: bread_pudding 1375816.jpg
5 58 ice_cream
6 63 macarons
7 38 fish_and_chips
8 3 beef_carpaccio
9 59 lasagna
Skipping bad image: lasagna 3787908.jpg
10 84 risotto
11 53 hamburger
12 7 bibimbap
13 15 ceviche
14 92 spring_rolls
15 78 poutine
16 76 pizza
17 19 chicken_quesadilla
18 71 paella
19 11 caesar_salad
20 30 deviled_eggs
21 40 french_fries
22 25 club_sandwich
23 77 pork_chop
24 31 donuts
25 93 steak
Skipping bad image: steak 1340977.jpg
26 43 fried_calamari
27 52 gyoza
28 20 chicken_wings
29 47 gnocchi
30 46 garlic_bread
31 81 ramen
32 86 sashimi
33 100 waffles
34 60 lobster_bisque
35 23 churros
36 1 baby_back_ribs
37 0 apple_pie
38 27 creme_brulee
39 79 prime_rib
40 54 hot_and_sour_soup
41 55 hot_dog
42 82 ravioli
43 66 nachos
44 85 samosa
45 95 sushi
46 70 pad_thai
47 87 scallops
48 42 french_toast
49 13 caprese_salad
50 21 chocolate_cake
51 83 red_velvet_cake
52 88 seaweed_salad
53 96 tacos
54 16 cheesecake
55 90 spaghetti_bolognese
56 94 strawberry_shortcake
57 64 miso_soup
58 98 tiramisu
59 74 peking_duck
60 17 cheese_plate
61 69 oysters
62 14 carrot_cake
63 6 beignets
64 61 lobster_roll_sandwich
65 45 frozen_yogurt
66 24 clam_chowder
67 9 breakfast_burrito
68 72 pancakes
69 32 dumplings
70 57 hummus
71 10 bruschetta
72 44 fried_rice
73 97 takoyaki
74 50 grilled_salmon
75 4 beef_tartare
76 89 shrimp_and_grits
77 28 croque_madame
78 49 grilled_cheese_sandwich
79 80 pulled_pork_sandwich
80 56 huevos_rancheros
81 35 escargots
82 91 spaghetti_carbonara
83 34 eggs_benedict
84 33 edamame
85 22 chocolate_mousse
86 18 chicken_curry
87 65 mussels
88 36 falafel
89 37 filet_mignon
90 26 crab_cakes
91 48 greek_salad
92 5 beet_salad
93 51 guacamole
94 29 cup_cakes
95 68 onion_rings
96 39 foie_gras
97 67 omelette
98 73 panna_cotta
99 75 pho
100 62 macaroni_and_cheese
75747 images loaded
2091 images resized
3 images skipped
CPU times: user 3min 51s, sys: 13.9 s, total: 4min 5s
Wall time: 4min 5s
print ( 'X_train shape' , X_train . shape )
print ( 'y_train shape' , y_train . shape )
print ( 'X_test shape' , X_test . shape )
print ( 'y_test shape' , y_test . shape ) X_train shape (75747,)
y_train shape (75747,)
X_test shape (25250,)
y_test shape (25250,)
@ interact ( n = ( 0 , len ( X_train )))
def show_pic ( n ):
plt . imshow ( X_train [ n ])
print ( 'class:' , y_train [ n ], ix_to_class [ y_train [ n ]]) class: 21 chocolate_cake

@ interact ( n = ( 0 , len ( X_test )))
def show_pic ( n ):
plt . imshow ( X_test [ n ])
print ( 'class:' , y_test [ n ], ix_to_class [ y_test [ n ]]) class: 21 chocolate_cake

@ interact ( n_class = sorted_class_to_ix )
def show_random_images_of_class ( n_class = 0 ):
print ( n_class )
nrows = 4
ncols = 8
fig , axes = plt . subplots ( nrows = nrows , ncols = ncols )
fig . set_size_inches ( 12 , 8 )
#fig.tight_layout()
imgs = np . random . choice (( y_train == n_class ). nonzero ()[ 0 ], nrows * ncols )
for i , ax in enumerate ( axes . flat ):
im = ax . imshow ( X_train [ imgs [ i ]])
ax . set_axis_off ()
ax . title . set_visible ( False )
ax . xaxis . set_ticks ([])
ax . yaxis . set_ticks ([])
for spine in ax . spines . values ():
spine . set_visible ( False )
plt . subplots_adjust ( left = 0 , wspace = 0 , hspace = 0 )
plt . show () 0

@ interact ( n_class = sorted_class_to_ix )
def show_random_images_of_class ( n_class = 0 ):
print ( n_class )
nrows = 4
ncols = 8
fig , axes = plt . subplots ( nrows = nrows , ncols = ncols )
fig . set_size_inches ( 12 , 8 )
#fig.tight_layout()
imgs = np . random . choice (( y_test == n_class ). nonzero ()[ 0 ], nrows * ncols )
for i , ax in enumerate ( axes . flat ):
im = ax . imshow ( X_test [ imgs [ i ]])
ax . set_axis_off ()
ax . title . set_visible ( False )
ax . xaxis . set_ticks ([])
ax . yaxis . set_ticks ([])
for spine in ax . spines . values ():
spine . set_visible ( False )
plt . subplots_adjust ( left = 0 , wspace = 0 , hspace = 0 )
plt . show () 0

我們需要單速編碼每個標籤值,以創建一個二進制功能的向量,而不是一個可以使用n_classes值的功能。
from keras . utils . np_utils import to_categorical
n_classes = 101
y_train_cat = to_categorical ( y_train , nb_classes = n_classes )
y_test_cat = to_categorical ( y_test , nb_classes = n_classes ) from keras . applications . inception_v3 import InceptionV3
from keras . applications . inception_v3 import preprocess_input , decode_predictions
from keras . preprocessing import image
from keras . layers import Input
import tools . image_gen_extended as T
# Useful for checking the output of the generators after code change
#from importlib import reload
#reload(T)我需要擁有比與Keras發行的更強大的圖像增強管道。幸運的是,我能夠找到這個修改版本作為我的基礎。
作者添加了一條可擴展的管道,這使得可以指定其他修改,例如自定義裁剪功能並能夠使用Ineption Image圖像預處理程序。能夠動態應用預處理是必要的,因為我沒有足夠的記憶力將所有訓練集保持為float32s 。我能夠將整個訓練組加載為uint8s 。
此外,我並沒有完全利用我的GPU或多核CPU。默認情況下,Python只能使用單個核心,從而限制了我可以發送到GPU進行培訓的處理/增強圖像的數量。根據一些性能監控,我平均只使用GPU的一小部分。通過合併Python multiprocessing Pool ,我能夠獲得約50%的CPU利用率和90%的GPU利用率。
最終結果是,每個訓練時期都從45分鐘到22分鐘!您可以在此筆記本中訓練時自己運行GPU圖。試圖改善數據增強和GPU性能的靈感來自Jimmie Goode:緩衝的Python發電機以進行數據擴展
目前,該代碼相當有貨物,並且每當手動中斷培訓時,都需要重新啟動Python內核。該代碼被完全砍得在一起,某些功能(例如涉及擬合的功能)被禁用。我希望改善這種成像的AtageTagenerator並將其釋放給社區。
display ( Image ( './gpu.png' ))
% % time
# this is the augmentation configuration we will use for training
train_datagen = T . ImageDataGenerator (
featurewise_center = False , # set input mean to 0 over the dataset
samplewise_center = False , # set each sample mean to 0
featurewise_std_normalization = False , # divide inputs by std of the dataset
samplewise_std_normalization = False , # divide each input by its std
zca_whitening = False , # apply ZCA whitening
rotation_range = 0 , # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range = 0.2 , # randomly shift images horizontally (fraction of total width)
height_shift_range = 0.2 , # randomly shift images vertically (fraction of total height)
horizontal_flip = True , # randomly flip images
vertical_flip = False , # randomly flip images
zoom_range = [ .8 , 1 ],
channel_shift_range = 30 ,
fill_mode = 'reflect' )
train_datagen . config [ 'random_crop_size' ] = ( 299 , 299 )
train_datagen . set_pipeline ([ T . random_transform , T . random_crop , T . preprocess_input ])
train_generator = train_datagen . flow ( X_train , y_train_cat , batch_size = 64 , seed = 11 , pool = pool ) test_datagen = T . ImageDataGenerator ()
test_datagen . config [ 'random_crop_size' ] = ( 299 , 299 )
test_datagen . set_pipeline ([ T . random_transform , T . random_crop , T . preprocess_input ])
test_generator = test_datagen . flow ( X_test , y_test_cat , batch_size = 64 , seed = 11 , pool = pool )我們可以看到這些成像的脂蛋白劑中正在出現哪些圖像:
def reverse_preprocess_input ( x0 ):
x = x0 / 2.0
x += 0.5
x *= 255.
return x % % time
@ interact ()
def show_images ( unprocess = True ):
for x in test_generator :
fig , axes = plt . subplots ( nrows = 8 , ncols = 4 )
fig . set_size_inches ( 8 , 8 )
page = 0
page_size = 32
start_i = page * page_size
for i , ax in enumerate ( axes . flat ):
img = x [ 0 ][ i + start_i ]
if unprocess :
im = ax . imshow ( reverse_preprocess_input ( img ). astype ( 'uint8' ) )
else :
im = ax . imshow ( img )
ax . set_axis_off ()
ax . title . set_visible ( False )
ax . xaxis . set_ticks ([])
ax . yaxis . set_ticks ([])
for spine in ax . spines . values ():
spine . set_visible ( False )
plt . subplots_adjust ( left = 0 , wspace = 0 , hspace = 0 )
plt . show ()
break 
CPU times: user 1.54 s, sys: 524 ms, total: 2.06 s
Wall time: 2.24 s
% % time
show_images ( unprocess = False )
CPU times: user 1.58 s, sys: 300 ms, total: 1.88 s
Wall time: 2.11 s
我們將在ImageNet上仔細研究Google InceptionV3模型。神經網絡架構如下所示。
% % time
from keras . models import Sequential , Model
from keras . layers import Dense , Dropout , Activation , Flatten
from keras . layers import Convolution2D , MaxPooling2D , ZeroPadding2D , GlobalAveragePooling2D , AveragePooling2D
from keras . layers . normalization import BatchNormalization
from keras . preprocessing . image import ImageDataGenerator
from keras . callbacks import ModelCheckpoint , CSVLogger , LearningRateScheduler , ReduceLROnPlateau
from keras . optimizers import SGD
from keras . regularizers import l2
import keras . backend as K
import math
K . clear_session ()
base_model = InceptionV3 ( weights = 'imagenet' , include_top = False , input_tensor = Input ( shape = ( 299 , 299 , 3 )))
x = base_model . output
x = AveragePooling2D ( pool_size = ( 8 , 8 ))( x )
x = Dropout ( .4 )( x )
x = Flatten ()( x )
predictions = Dense ( n_classes , init = 'glorot_uniform' , W_regularizer = l2 ( .0005 ), activation = 'softmax' )( x )
model = Model ( input = base_model . input , output = predictions )
opt = SGD ( lr = .01 , momentum = .9 )
model . compile ( optimizer = opt , loss = 'categorical_crossentropy' , metrics = [ 'accuracy' ])
checkpointer = ModelCheckpoint ( filepath = 'model4.{epoch:02d}-{val_loss:.2f}.hdf5' , verbose = 1 , save_best_only = True )
csv_logger = CSVLogger ( 'model4.log' )
def schedule ( epoch ):
if epoch < 15 :
return .01
elif epoch < 28 :
return .002
else :
return .0004
lr_scheduler = LearningRateScheduler ( schedule )
model . fit_generator ( train_generator ,
validation_data = test_generator ,
nb_val_samples = X_test . shape [ 0 ],
samples_per_epoch = X_train . shape [ 0 ],
nb_epoch = 32 ,
verbose = 2 ,
callbacks = [ lr_scheduler , csv_logger , checkpointer ]) Epoch 1/32
Epoch 00000: val_loss improved from inf to 3.37355, saving model to model4.00-3.37.hdf5
1342s - loss: 4.2541 - acc: 0.0810 - val_loss: 3.3736 - val_acc: 0.2010
Epoch 2/32
Epoch 00001: val_loss improved from 3.37355 to 2.36625, saving model to model4.01-2.37.hdf5
1329s - loss: 2.9745 - acc: 0.3075 - val_loss: 2.3662 - val_acc: 0.4071
Epoch 3/32
Epoch 00002: val_loss improved from 2.36625 to 1.79355, saving model to model4.02-1.79.hdf5
1329s - loss: 2.3080 - acc: 0.4539 - val_loss: 1.7935 - val_acc: 0.5338
Epoch 4/32
Epoch 00003: val_loss improved from 1.79355 to 1.48898, saving model to model4.03-1.49.hdf5
1356s - loss: 2.0102 - acc: 0.5216 - val_loss: 1.4890 - val_acc: 0.6068
Epoch 5/32
Epoch 00004: val_loss improved from 1.48898 to 1.34121, saving model to model4.04-1.34.hdf5
1330s - loss: 1.8436 - acc: 0.5577 - val_loss: 1.3412 - val_acc: 0.6431
Epoch 6/32
Epoch 00005: val_loss improved from 1.34121 to 1.22485, saving model to model4.05-1.22.hdf5
1329s - loss: 1.7057 - acc: 0.5909 - val_loss: 1.2248 - val_acc: 0.6740
Epoch 7/32
Epoch 00006: val_loss did not improve
1328s - loss: 1.5996 - acc: 0.6126 - val_loss: 1.2310 - val_acc: 0.6716
Epoch 8/32
Epoch 00007: val_loss improved from 1.22485 to 1.11248, saving model to model4.07-1.11.hdf5
1331s - loss: 1.5148 - acc: 0.6314 - val_loss: 1.1125 - val_acc: 0.7022
Epoch 9/32
Epoch 00008: val_loss improved from 1.11248 to 1.07145, saving model to model4.08-1.07.hdf5
1331s - loss: 1.4395 - acc: 0.6506 - val_loss: 1.0714 - val_acc: 0.7095
Epoch 10/32
Epoch 00009: val_loss improved from 1.07145 to 1.05129, saving model to model4.09-1.05.hdf5
1333s - loss: 1.3900 - acc: 0.6637 - val_loss: 1.0513 - val_acc: 0.7181
Epoch 11/32
Epoch 00010: val_loss improved from 1.05129 to 1.03356, saving model to model4.10-1.03.hdf5
1331s - loss: 1.3316 - acc: 0.6780 - val_loss: 1.0336 - val_acc: 0.7250
Epoch 12/32
Epoch 00011: val_loss improved from 1.03356 to 1.00622, saving model to model4.11-1.01.hdf5
1331s - loss: 1.2850 - acc: 0.6893 - val_loss: 1.0062 - val_acc: 0.7275
Epoch 13/32
Epoch 00012: val_loss improved from 1.00622 to 0.94016, saving model to model4.12-0.94.hdf5
1330s - loss: 1.2325 - acc: 0.7003 - val_loss: 0.9402 - val_acc: 0.7461
Epoch 14/32
Epoch 00013: val_loss did not improve
1330s - loss: 1.1970 - acc: 0.7086 - val_loss: 0.9461 - val_acc: 0.7453
Epoch 15/32
Epoch 00014: val_loss did not improve
1329s - loss: 1.1683 - acc: 0.7154 - val_loss: 0.9691 - val_acc: 0.7396
Epoch 16/32
Epoch 00015: val_loss improved from 0.94016 to 0.71776, saving model to model4.15-0.72.hdf5
1329s - loss: 0.9398 - acc: 0.7724 - val_loss: 0.7178 - val_acc: 0.8055
Epoch 17/32
Epoch 00016: val_loss improved from 0.71776 to 0.70245, saving model to model4.16-0.70.hdf5
1329s - loss: 0.8591 - acc: 0.7916 - val_loss: 0.7025 - val_acc: 0.8069
Epoch 18/32
Epoch 00017: val_loss did not improve
1327s - loss: 0.8238 - acc: 0.8023 - val_loss: 0.7093 - val_acc: 0.8053
Epoch 19/32
Epoch 00018: val_loss did not improve
1327s - loss: 0.7947 - acc: 0.8093 - val_loss: 0.7048 - val_acc: 0.8059
Epoch 20/32
Epoch 00019: val_loss did not improve
1327s - loss: 0.7713 - acc: 0.8143 - val_loss: 0.7097 - val_acc: 0.8061
Epoch 21/32
Epoch 00020: val_loss improved from 0.70245 to 0.69545, saving model to model4.20-0.70.hdf5
1329s - loss: 0.7458 - acc: 0.8195 - val_loss: 0.6955 - val_acc: 0.8104
Epoch 22/32
Epoch 00021: val_loss did not improve
1328s - loss: 0.7282 - acc: 0.8232 - val_loss: 0.6977 - val_acc: 0.8119
Epoch 23/32
Epoch 00022: val_loss improved from 0.69545 to 0.69190, saving model to model4.22-0.69.hdf5
1328s - loss: 0.7114 - acc: 0.8284 - val_loss: 0.6919 - val_acc: 0.8150
Epoch 24/32
Epoch 00023: val_loss did not improve
1325s - loss: 0.6983 - acc: 0.8311 - val_loss: 0.7002 - val_acc: 0.8116
Epoch 25/32
Epoch 00024: val_loss did not improve
1330s - loss: 0.6719 - acc: 0.8381 - val_loss: 0.7031 - val_acc: 0.8112
Epoch 26/32
Epoch 00025: val_loss did not improve
1382s - loss: 0.6607 - acc: 0.8407 - val_loss: 0.7115 - val_acc: 0.8083
Epoch 27/32
Epoch 00026: val_loss did not improve
1330s - loss: 0.6479 - acc: 0.8439 - val_loss: 0.7037 - val_acc: 0.8126
Epoch 28/32
Epoch 00027: val_loss did not improve
1328s - loss: 0.6292 - acc: 0.8478 - val_loss: 0.7122 - val_acc: 0.8086
Epoch 29/32
Epoch 00028: val_loss improved from 0.69190 to 0.68908, saving model to model4.28-0.69.hdf5
1330s - loss: 0.5983 - acc: 0.8580 - val_loss: 0.6891 - val_acc: 0.8165
Epoch 30/32
Epoch 00029: val_loss improved from 0.68908 to 0.68740, saving model to model4.29-0.69.hdf5
1330s - loss: 0.5817 - acc: 0.8612 - val_loss: 0.6874 - val_acc: 0.8149
Epoch 31/32
Epoch 00030: val_loss did not improve
1328s - loss: 0.5729 - acc: 0.8642 - val_loss: 0.6912 - val_acc: 0.8143
Epoch 32/32
Epoch 00031: val_loss did not improve
1329s - loss: 0.5638 - acc: 0.8663 - val_loss: 0.6895 - val_acc: 0.8159
CPU times: user 8h 49min 20s, sys: 1h 55min 54s, total: 10h 45min 14s
Wall time: 11h 51min 18s
在這一點上,我們在測試集中看到了多達81.65個單腳架的TOP-1精度。我們可以繼續以較慢的學習率來訓練該模型,以查看它是否有所改善。
我最初的實驗使用了更多現代的優化器,例如亞當和阿達德爾塔,以及更高的學習率。在我決定更仔細地遵循文獻並使用隨機梯度下降(SGD)以迅速減少學習時間表之前,我被困了一段時間以下的精度低於80%的精度。當我們在多維表面搜索時,有時會慢了。
由於我的多處理代碼有些不穩定,有時我需要重新啟動筆記本,加載最新模型,然後繼續培訓。
% % time
from keras . models import Sequential , Model , load_model
from keras . layers import Dense , Dropout , Activation , Flatten
from keras . layers import Convolution2D , MaxPooling2D , ZeroPadding2D , GlobalAveragePooling2D , AveragePooling2D
from keras . layers . normalization import BatchNormalization
from keras . preprocessing . image import ImageDataGenerator
from keras . callbacks import ModelCheckpoint , CSVLogger , LearningRateScheduler , ReduceLROnPlateau
from keras . optimizers import SGD
from keras . regularizers import l2
import keras . backend as K
import math
model = load_model ( filepath = './model4.29-0.69.hdf5' )
opt = SGD ( lr = .01 , momentum = .9 )
model . compile ( optimizer = opt , loss = 'categorical_crossentropy' , metrics = [ 'accuracy' ])
checkpointer = ModelCheckpoint ( filepath = 'model4b.{epoch:02d}-{val_loss:.2f}.hdf5' , verbose = 1 , save_best_only = True )
csv_logger = CSVLogger ( 'model4b.log' )
def schedule ( epoch ):
if epoch < 10 :
return .00008
elif epoch < 20 :
return .000016
else :
return .0000032
lr_scheduler = LearningRateScheduler ( schedule )
model . fit_generator ( train_generator ,
validation_data = test_generator ,
nb_val_samples = X_test . shape [ 0 ],
samples_per_epoch = X_train . shape [ 0 ],
nb_epoch = 32 ,
verbose = 2 ,
callbacks = [ lr_scheduler , csv_logger , checkpointer ])在這一點上,我們應該將多個訓練有素的模型保存到磁盤上。我們可以通過它們並使用load_model函數以最低損耗 /最高精度加載模型。
% % time
#model = load_model(filepath='./model4.29-0.69.hdf5') # 86.8039 10-crop Top-1 test accuracy
model = load_model ( filepath = './model4b.10-0.68.hdf5' ) # 86.9703 CPU times: user 36.4 s, sys: 1.11 s, total: 37.5 s
Wall time: 36.5 s
我們還想使用多種農作物評估測試集。與單個作物評估相比,這可以產生5%的準確性提升。通常使用以下農作物:左上,右上,左下,右下,中心。我們還將相同的農作物從從左到右翻轉的圖像上,總共創造了10種農作物。
此外,我們希望返回每種作物的頂部N預測,以計算TOP-5的精度。
def center_crop ( x , center_crop_size , ** kwargs ):
centerw , centerh = x . shape [ 0 ] // 2 , x . shape [ 1 ] // 2
halfw , halfh = center_crop_size [ 0 ] // 2 , center_crop_size [ 1 ] // 2
return x [ centerw - halfw : centerw + halfw + 1 , centerh - halfh : centerh + halfh + 1 , :] def predict_10_crop ( img , ix , top_n = 5 , plot = False , preprocess = True , debug = False ):
flipped_X = np . fliplr ( img )
crops = [
img [: 299 ,: 299 , :], # Upper Left
img [: 299 , img . shape [ 1 ] - 299 :, :], # Upper Right
img [ img . shape [ 0 ] - 299 :, : 299 , :], # Lower Left
img [ img . shape [ 0 ] - 299 :, img . shape [ 1 ] - 299 :, :], # Lower Right
center_crop ( img , ( 299 , 299 )),
flipped_X [: 299 ,: 299 , :],
flipped_X [: 299 , flipped_X . shape [ 1 ] - 299 :, :],
flipped_X [ flipped_X . shape [ 0 ] - 299 :, : 299 , :],
flipped_X [ flipped_X . shape [ 0 ] - 299 :, flipped_X . shape [ 1 ] - 299 :, :],
center_crop ( flipped_X , ( 299 , 299 ))
]
if preprocess :
crops = [ preprocess_input ( x . astype ( 'float32' )) for x in crops ]
if plot :
fig , ax = plt . subplots ( 2 , 5 , figsize = ( 10 , 4 ))
ax [ 0 ][ 0 ]. imshow ( crops [ 0 ])
ax [ 0 ][ 1 ]. imshow ( crops [ 1 ])
ax [ 0 ][ 2 ]. imshow ( crops [ 2 ])
ax [ 0 ][ 3 ]. imshow ( crops [ 3 ])
ax [ 0 ][ 4 ]. imshow ( crops [ 4 ])
ax [ 1 ][ 0 ]. imshow ( crops [ 5 ])
ax [ 1 ][ 1 ]. imshow ( crops [ 6 ])
ax [ 1 ][ 2 ]. imshow ( crops [ 7 ])
ax [ 1 ][ 3 ]. imshow ( crops [ 8 ])
ax [ 1 ][ 4 ]. imshow ( crops [ 9 ])
y_pred = model . predict ( np . array ( crops ))
preds = np . argmax ( y_pred , axis = 1 )
top_n_preds = np . argpartition ( y_pred , - top_n )[:, - top_n :]
if debug :
print ( 'Top-1 Predicted:' , preds )
print ( 'Top-5 Predicted:' , top_n_preds )
print ( 'True Label:' , y_test [ ix ])
return preds , top_n_preds
ix = 13001
predict_10_crop ( X_test [ ix ], ix , top_n = 5 , plot = True , preprocess = False , debug = True ) Top-1 Predicted: [74 74 74 74 74 74 74 74 74 74]
Top-5 Predicted: [[33 97 37 39 74]
[28 52 37 39 74]
[73 39 52 37 74]
[35 33 37 39 74]
[35 33 37 39 74]
[35 33 37 39 74]
[35 33 37 39 74]
[97 37 73 39 74]
[73 52 37 39 74]
[34 35 33 39 74]]
True Label: 88
(array([74, 74, 74, 74, 74, 74, 74, 74, 74, 74]), array([[33, 97, 37, 39, 74],
[28, 52, 37, 39, 74],
[73, 39, 52, 37, 74],
[35, 33, 37, 39, 74],
[35, 33, 37, 39, 74],
[35, 33, 37, 39, 74],
[35, 33, 37, 39, 74],
[97, 37, 73, 39, 74],
[73, 52, 37, 39, 74],
[34, 35, 33, 39, 74]]))

我們還需要預處理成立模型的圖像:
ix = 13001
predict_10_crop ( X_test [ ix ], ix , top_n = 5 , plot = True , preprocess = True , debug = True ) Top-1 Predicted: [51 51 88 88 88 51 51 88 88 88]
Top-5 Predicted: [[18 79 51 13 48]
[48 79 11 55 51]
[79 93 81 37 88]
[51 86 93 81 88]
[11 79 51 81 88]
[19 79 51 56 13]
[11 88 48 51 13]
[37 93 86 88 81]
[37 79 93 88 81]
[84 81 11 79 88]]
True Label: 88
(array([51, 51, 88, 88, 88, 51, 51, 88, 88, 88]), array([[18, 79, 51, 13, 48],
[48, 79, 11, 55, 51],
[79, 93, 81, 37, 88],
[51, 86, 93, 81, 88],
[11, 79, 51, 81, 88],
[19, 79, 51, 56, 13],
[11, 88, 48, 51, 13],
[37, 93, 86, 88, 81],
[37, 79, 93, 88, 81],
[84, 81, 11, 79, 88]]))

現在,我們為測試集中的每個項目創建農作物,並獲得預測。目前,這是一個緩慢的過程,因為我沒有利用多處理或其他類型的並行性。
% % time
preds_10_crop = {}
for ix in range ( len ( X_test )):
if ix % 1000 == 0 :
print ( ix )
preds_10_crop [ ix ] = predict_10_crop ( X_test [ ix ], ix ) 0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000
21000
22000
23000
24000
25000
CPU times: user 50min 3s, sys: 5min 13s, total: 55min 16s
Wall time: 31min 28s
現在,我們對每個圖像都有一組10個預測。使用直方圖,我能夠查看如何分佈每個圖像的唯一預測#。
preds_uniq = { k : np . unique ( v [ 0 ]) for k , v in preds_10_crop . items ()}
preds_hist = np . array ([ len ( x ) for x in preds_uniq . values ()])
plt . hist ( preds_hist , bins = 11 )
plt . title ( 'Number of unique predictions per image' ) <matplotlib.text.Text at 0x7fe30c3daa20>

讓我們創建一個詞典以將測試項目索引映射到其TOP-1 / TOP-5預測。
preds_top_1 = { k : collections . Counter ( v [ 0 ]). most_common ( 1 ) for k , v in preds_10_crop . items ()}
top_5_per_ix = { k : collections . Counter ( preds_10_crop [ k ][ 1 ]. reshape ( - 1 )). most_common ( 5 )
for k , v in preds_10_crop . items ()}
preds_top_5 = { k : [ y [ 0 ] for y in v ] for k , v in top_5_per_ix . items ()} % % time
right_counter = 0
for i in range ( len ( y_test )):
guess , actual = preds_top_1 [ i ][ 0 ][ 0 ], y_test [ i ]
if guess == actual :
right_counter += 1
print ( 'Top-1 Accuracy, 10-Crop: {0:.2f}%' . format ( right_counter / len ( y_test ) * 100 )) Top-1 Accuracy, 10-Crop: 86.97%
CPU times: user 28 ms, sys: 0 ns, total: 28 ms
Wall time: 27.3 ms
% % time
top_5_counter = 0
for i in range ( len ( y_test )):
guesses , actual = preds_top_5 [ i ], y_test [ i ]
if actual in guesses :
top_5_counter += 1
print ( 'Top-5 Accuracy, 10-Crop: {0:.2f}%' . format ( top_5_counter / len ( y_test ) * 100 )) Top-5 Accuracy, 10-Crop: 97.42%
CPU times: user 28 ms, sys: 0 ns, total: 28 ms
Wall time: 27 ms
y_pred = [ x [ 0 ][ 0 ] for x in preds_top_1 . values ()] @ interact ( page = [ 0 , int ( len ( X_test ) / 20 )])
def show_images_prediction ( page = 0 ):
page_size = 20
nrows = 4
ncols = 5
fig , axes = plt . subplots ( nrows = nrows , ncols = ncols , figsize = ( 12 , 12 ))
fig . set_size_inches ( 12 , 8 )
#fig.tight_layout()
#imgs = np.random.choice((y_all == n_class).nonzero()[0], nrows * ncols)
start_i = page * page_size
for i , ax in enumerate ( axes . flat ):
im = ax . imshow ( X_test [ i + start_i ])
ax . set_axis_off ()
ax . title . set_visible ( False )
ax . xaxis . set_ticks ([])
ax . yaxis . set_ticks ([])
for spine in ax . spines . values ():
spine . set_visible ( False )
predicted = ix_to_class [ y_pred [ i + start_i ]]
match = predicted == ix_to_class [ y_test [ start_i + i ]]
ec = ( 1 , .5 , .5 )
fc = ( 1 , .8 , .8 )
if match :
ec = ( 0 , .6 , .1 )
fc = ( 0 , .7 , .2 )
# predicted label
ax . text ( 0 , 400 , 'P: ' + predicted , size = 10 , rotation = 0 ,
ha = "left" , va = "top" ,
bbox = dict ( boxstyle = "round" ,
ec = ec ,
fc = fc ,
)
)
if not match :
# true label
ax . text ( 0 , 480 , 'A: ' + ix_to_class [ y_test [ start_i + i ]], size = 10 , rotation = 0 ,
ha = "left" , va = "top" ,
bbox = dict ( boxstyle = "round" ,
ec = ec ,
fc = fc ,
)
)
plt . subplots_adjust ( left = 0 , wspace = 1 , hspace = 0 )
plt . show ()
混淆矩陣將繪製每個類標籤,並正確標記了多少次,而其他時間則將其錯誤地標記為不同的類。
% % time
from sklearn . metrics import confusion_matrix
import itertools
def plot_confusion_matrix ( cm , classes ,
normalize = False ,
title = 'Confusion matrix' ,
cmap = plt . cm . Blues ):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
plt . imshow ( cm , interpolation = 'nearest' , cmap = cmap )
plt . title ( title )
plt . colorbar ()
tick_marks = np . arange ( len ( classes ))
plt . xticks ( tick_marks , classes , rotation = 90 )
plt . yticks ( tick_marks , classes )
if normalize :
cm = cm . astype ( 'float' ) / cm . sum ( axis = 1 )[:, np . newaxis ]
print ( "Normalized confusion matrix" )
else :
print ( 'Confusion matrix, without normalization' )
print ( cm )
thresh = cm . max () / 2.
for i , j in itertools . product ( range ( cm . shape [ 0 ]), range ( cm . shape [ 1 ])):
plt . text ( j , i , cm [ i , j ],
horizontalalignment = "center" ,
color = "white" if cm [ i , j ] > thresh else "black" )
plt . tight_layout ()
plt . ylabel ( 'True label' )
plt . xlabel ( 'Predicted label' )
# Compute confusion matrix
cnf_matrix = confusion_matrix ( y_test , y_pred )
np . set_printoptions ( precision = 2 )
class_names = [ ix_to_class [ i ] for i in range ( 101 )]
plt . figure ()
fig = plt . gcf ()
fig . set_size_inches ( 32 , 32 )
plot_confusion_matrix ( cnf_matrix , classes = class_names ,
title = 'Confusion matrix, without normalization' ,
cmap = plt . cm . cool )
plt . show () Confusion matrix, without normalization
[[179 0 4 ..., 2 0 5]
[ 0 218 0 ..., 0 0 0]
[ 4 0 228 ..., 1 0 0]
...,
[ 0 0 0 ..., 212 0 1]
[ 0 0 0 ..., 0 208 0]
[ 0 0 0 ..., 0 0 224]]

CPU times: user 16.4 s, sys: 1.22 s, total: 17.6 s
Wall time: 16.4 s
我們想看看所有課程的準確性是否一致,或者某些課程比其他類別更容易 /難度更容易 /難。根據我們的情節,幾個課程是在更難正確標記的情況下是離群值。
corrects = collections . defaultdict ( int )
incorrects = collections . defaultdict ( int )
for ( pred , actual ) in zip ( y_pred , y_test ):
if pred == actual :
corrects [ actual ] += 1
else :
incorrects [ actual ] += 1
class_accuracies = {}
for ix in range ( 101 ):
class_accuracies [ ix ] = corrects [ ix ] / 250
plt . hist ( list ( class_accuracies . values ()), bins = 20 )
plt . title ( 'Accuracy by Class histogram' ) <matplotlib.text.Text at 0x7fe2d5d4f860>

sorted_class_accuracies = sorted ( class_accuracies . items (), key = lambda x : - x [ 1 ])
[( ix_to_class [ c [ 0 ]], c [ 1 ]) for c in sorted_class_accuracies ] [('edamame', 0.996),
('hot_and_sour_soup', 0.964),
('oysters', 0.964),
('seaweed_salad', 0.96),
('macarons', 0.956),
('pad_thai', 0.956),
('spaghetti_bolognese', 0.956),
('french_fries', 0.952),
('frozen_yogurt', 0.952),
('takoyaki', 0.952),
('spaghetti_carbonara', 0.948),
('clam_chowder', 0.944),
('deviled_eggs', 0.944),
('churros', 0.94),
('miso_soup', 0.94),
('creme_brulee', 0.936),
('pho', 0.936),
('cannoli', 0.932),
('guacamole', 0.932),
('mussels', 0.932),
('sashimi', 0.932),
('caesar_salad', 0.928),
('lobster_roll_sandwich', 0.928),
('bibimbap', 0.924),
('cup_cakes', 0.924),
('dumplings', 0.924),
('ramen', 0.924),
('beef_carpaccio', 0.92),
('eggs_benedict', 0.92),
('pancakes', 0.92),
('red_velvet_cake', 0.92),
('beignets', 0.916),
('club_sandwich', 0.916),
('escargots', 0.916),
('french_onion_soup', 0.916),
('onion_rings', 0.916),
('baklava', 0.912),
('croque_madame', 0.912),
('fish_and_chips', 0.908),
('poutine', 0.908),
('cheese_plate', 0.904),
('chicken_wings', 0.904),
('fried_rice', 0.904),
('sushi', 0.904),
('fried_calamari', 0.9),
('pulled_pork_sandwich', 0.896),
('waffles', 0.896),
('crab_cakes', 0.892),
('gyoza', 0.892),
('paella', 0.892),
('caprese_salad', 0.888),
('lobster_bisque', 0.888),
('peking_duck', 0.888),
('pizza', 0.888),
('greek_salad', 0.88),
('hot_dog', 0.88),
('samosa', 0.88),
('donuts', 0.876),
('spring_rolls', 0.876),
('baby_back_ribs', 0.872),
('strawberry_shortcake', 0.872),
('shrimp_and_grits', 0.868),
('tacos', 0.86),
('beef_tartare', 0.856),
('prime_rib', 0.856),
('chicken_quesadilla', 0.852),
('hummus', 0.852),
('grilled_salmon', 0.848),
('tiramisu', 0.848),
('macaroni_and_cheese', 0.844),
('carrot_cake', 0.836),
('nachos', 0.836),
('falafel', 0.832),
('tuna_tartare', 0.832),
('panna_cotta', 0.828),
('bruschetta', 0.824),
('grilled_cheese_sandwich', 0.824),
('risotto', 0.812),
('french_toast', 0.808),
('gnocchi', 0.808),
('garlic_bread', 0.804),
('breakfast_burrito', 0.8),
('beet_salad', 0.796),
('hamburger', 0.796),
('cheesecake', 0.792),
('lasagna', 0.792),
('ceviche', 0.784),
('chicken_curry', 0.784),
('omelette', 0.784),
('scallops', 0.784),
('chocolate_cake', 0.78),
('huevos_rancheros', 0.78),
('ravioli', 0.776),
('ice_cream', 0.764),
('bread_pudding', 0.748),
('foie_gras', 0.72),
('apple_pie', 0.716),
('filet_mignon', 0.716),
('chocolate_mousse', 0.7),
('pork_chop', 0.676),
('steak', 0.576)]
從本地文件預測
pic_path = '/home/stratospark/Downloads/soup.jpg'
pic = img . imread ( pic_path )
preds = predict_10_crop ( np . array ( pic ), 0 )[ 0 ]
best_pred = collections . Counter ( preds ). most_common ( 1 )[ 0 ][ 0 ]
print ( ix_to_class [ best_pred ])
plt . imshow ( pic ) french_onion_soup
<matplotlib.image.AxesImage at 0x7fe2d59eb5c0>

從互聯網上的圖像預測
import urllib . request
@ interact
def predict_remote_image ( url = 'http://themodelhouse.tv/wp-content/uploads/2016/08/hummus.jpg' ):
with urllib . request . urlopen ( url ) as f :
pic = plt . imread ( f , format = 'jpg' )
preds = predict_10_crop ( np . array ( pic ), 0 )[ 0 ]
best_pred = collections . Counter ( preds ). most_common ( 1 )[ 0 ][ 0 ]
print ( ix_to_class [ best_pred ])
plt . imshow ( pic ) hummus

with open ( 'model.json' , 'w' ) as f :
f . write ( model . to_json ()) import json
json . dumps ( ix_to_class ) '{"0": "apple_pie", "1": "baby_back_ribs", "2": "baklava", "3": "beef_carpaccio", "4": "beef_tartare", "5": "beet_salad", "6": "beignets", "7": "bibimbap", "8": "bread_pudding", "9": "breakfast_burrito", "10": "bruschetta", "11": "caesar_salad", "12": "cannoli", "13": "caprese_salad", "14": "carrot_cake", "15": "ceviche", "16": "cheesecake", "17": "cheese_plate", "18": "chicken_curry", "19": "chicken_quesadilla", "20": "chicken_wings", "21": "chocolate_cake", "22": "chocolate_mousse", "23": "churros", "24": "clam_chowder", "25": "club_sandwich", "26": "crab_cakes", "27": "creme_brulee", "28": "croque_madame", "29": "cup_cakes", "30": "deviled_eggs", "31": "donuts", "32": "dumplings", "33": "edamame", "34": "eggs_benedict", "35": "escargots", "36": "falafel", "37": "filet_mignon", "38": "fish_and_chips", "39": "foie_gras", "40": "french_fries", "41": "french_onion_soup", "42": "french_toast", "43": "fried_calamari", "44": "fried_rice", "45": "frozen_yogurt", "46": "garlic_bread", "47": "gnocchi", "48": "greek_salad", "49": "grilled_cheese_sandwich", "50": "grilled_salmon", "51": "guacamole", "52": "gyoza", "53": "hamburger", "54": "hot_and_sour_soup", "55": "hot_dog", "56": "huevos_rancheros", "57": "hummus", "58": "ice_cream", "59": "lasagna", "60": "lobster_bisque", "61": "lobster_roll_sandwich", "62": "macaroni_and_cheese", "63": "macarons", "64": "miso_soup", "65": "mussels", "66": "nachos", "67": "omelette", "68": "onion_rings", "69": "oysters", "70": "pad_thai", "71": "paella", "72": "pancakes", "73": "panna_cotta", "74": "peking_duck", "75": "pho", "76": "pizza", "77": "pork_chop", "78": "poutine", "79": "prime_rib", "80": "pulled_pork_sandwich", "81": "ramen", "82": "ravioli", "83": "red_velvet_cake", "84": "risotto", "85": "samosa", "86": "sashimi", "87": "scallops", "88": "seaweed_salad", "89": "shrimp_and_grits", "90": "spaghetti_bolognese", "91": "spaghetti_carbonara", "92": "spring_rolls", "93": "steak", "94": "strawberry_shortcake", "95": "sushi", "96": "tacos", "97": "takoyaki", "98": "tiramisu", "99": "tuna_tartare", "100": "waffles"}'