Package Python pour l'espacement des mots coréens automatique.
R Verson peut être trouvé ici.
L'espacement des mots est l'une des parties importantes du prétraitement de l'analyse de texte coréenne. L'espacement précis affecte considérablement la précision de l'analyse de texte ultérieure. PyKoSpacing a des performances d'espacement automatique assez précises, en particulier bon pour le texte en ligne provenant de SNS ou de SMS.
Par exemple.
"아버지가방에들어가신다." Peut être espacé les deux ci-dessous.
Common Sense, le premier est la bonne réponse.
PyKoSpacing est basé sur un modèle d'apprentissage en profondeur formé à partir du grand corpus (plus de 100 millions d'articles d'information du parc Chan-Yub).
| Test de test | Précision |
|---|---|
| Sejong (style familier) Corpus (1M) | 97,1% |
| Oooo (style littéraire) Corpus (3M) | 94,3% |
Condition préalable:
proper installation of python3
proper installation of pip
pip install tensorflow
pip install keras
Windows-Ubuntu case: On following error.
On error: /usr/lib/x86_64-linux-gnu/libstdc++.so.6: version ` GLIBCXX_3.4.22 ' not found
sudo apt-get install libstdc++6
sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt-get update
sudo apt-get upgrade
sudo apt-get dist-upgrade (This takes long time.)Darwin (M1) Case: Vous devez installer Tensorflow d'une manière différente. (Utilisez MinIforge3)
# Install Miniforge3 for mac
curl -O https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh
chmod +x Miniforge3-MacOSX-arm64.sh
sh Miniforge3-MacOSX-arm64.sh
# Activate Miniforge3 virtualenv
# You should use Python version 3.10 or less.
source ~ /miniforge3/bin/activate
# Install the Tensorflow dependencies
conda install -c apple tensorflow-deps
# Install base tensorflow
python -m pip install tensorflow-macos
# Install metal plugin
python -m pip install tensorflow-metalPour installer à partir de github, utilisez
pip install git+https://github.com/haven-jeon/PyKoSpacing.git
> >> from pykospacing import Spacing
> >> spacing = Spacing ()
> >> spacing ( "김형호영화시장분석가는'1987'의네이버영화정보네티즌10점평에서언급된단어들을지난해12월27일부터올해1월10일까지통계프로그램R과KoNLP패키지로텍스트마이닝하여분석했다." )
"김형호 영화시장 분석가는 '1987'의 네이버 영화 정보 네티즌 10점 평에서 언급된 단어들을 지난해 12월 27일부터 올해 1월 10일까지 통계 프로그램 R과 KoNLP 패키지로 텍스트마이닝하여 분석했다."
> >> # Apply a list of words that must be non-spacing
>> > spacing ( '귀밑에서턱까지잇따라난수염을구레나룻이라고한다.' )
'귀 밑에서 턱까지 잇따라 난 수염을 구레나 룻이라고 한다.'
> >> spacing = Spacing ( rules = [ '구레나룻' ])
> >> spacing ( '귀밑에서턱까지잇따라난수염을구레나룻이라고한다.' )
'귀 밑에서 턱까지 잇따라 난 수염을 구레나룻이라고 한다.' Définition des règles avec le fichier CSV. (Il vous suffit d'utiliser la méthode set_rules_by_csv() .)
$ cat test.csv
인덱스,단어
1,네이버영화
2,언급된단어 > >> from pykospacing import Spacing
> >> spacing = Spacing ( rules = [ '' ])
> >> spacing . set_rules_by_csv ( './test.csv' , '단어' )
> >> spacing ( "김형호영화시장분석가는'1987'의네이버영화정보네티즌10점평에서언급된단어들을지난해12월27일부터올해1월10일까지통계프로그램R과KoNLP패키지로텍스트마이닝하여분석했다." )
"김형호 영화시장 분석가는 '1987'의 네이버영화 정보 네티즌 10점 평에서 언급된단어들을 지난해 12월 27일부터 올해 1월 10일까지 통계 프로그램 R과 KoNLP 패키지로 텍스트마이닝하여 분석했다."Exécutez sur la ligne de commande (merci lqez).
$ cat test_in.txt
김형호영화시장분석가는 ' 1987 ' 의네이버영화정보네티즌10점평에서언급된단어들을지난해12월27일부터올해1월10일까지통계프로그램R과KoNLP패키지로텍스트마이닝하여분석했다.
아버지가방에들어가신다.
$ python -m pykospacing.pykos test_in.txt
김형호 영화시장 분석가는 ' 1987 ' 의 네이버 영화 정보 네티즌 10점 평에서 언급된 단어들을 지난해 12월 27일부터 올해 1월 10일까지 통계 프로그램 R과 KoNLP 패키지로 텍스트마이닝하여 분석했다.
아버지가 방에 들어가신다. Le modèle actuel a des problèmes dans certains cas lorsque l'entrée comprend des caractères anglais.
Pykospacing fournit le paramètre ignore et ignore_pattern pour faire face à ce problème.
À propos ignore le paramètre (str, facultatif)
ignore='none' : aucun pré / post-traitement ne sera appliqué. La sortie sera la même que la sortie du modèle.ignore='pre' : appliquer le prétraitement qui supprime les caractères qui correspondent à ignore_pattern . Ces caractères supprimés seront fusionnés après la prédiction du modèle. Cette option a le problème qu'il met toujours de l'espace après les caractères supprimés, car il ne sait pas si le personnage supprimé aura un espace à gauche, à droite ou les deux.ignore='post' : appliquer le post-traitement qui ignore les sorties du modèle sur les caractères qui correspondent à ignore_pattern . Cette option a le problème que les caractères anglais dans l'entrée du modèle peuvent également affecter les caractères presque non anglais.ignore='pre2' : appliquer le prétraitement qui supprime les caractères qui correspond à ignore_pattern et à prédire à la fois sur le texte prétraité et le texte d'origine . Cela lui permet de savoir où placer l'espace à gauche, à droite ou les deux caractères supprimés. Cependant, cette option nécessite de prédire deux fois , ce qui double le temps de calcul.ignore='none' À propos du paramètre ignore_pattern (STR, Facultatif)
Vous pouvez saisir votre propre modèle regex pour ignore_pattern . Le motif regex doit être le modèle des caractères que vous souhaitez ignorer.
ignore_pattern=r'[^가-힣ㄱ-ㅣ!-@[-`{-~s]+,*( [^가-힣ㄱ-ㅣ!-@[-`{-~s]+,*)*[.,!?]* *' Exemples de paramètre ignore
> >> from pykospacing import Spacing
> >> spacing = Spacing ()
> >> spacing ( "친구와함께bmw썬바이저를썼다." , ignore = 'none' )
"친구와 함께 bm w 썬바이저를 썼다."
> >> spacing ( "친구와함께bmw썬바이저를썼다." , ignore = 'pre' )
"친구와 함께bmw 썬바이저를 썼다."
> >> spacing ( "친구와함께bmw썬바이저를썼다." , ignore = 'post' )
"친구와 함께 bm w 썬바이저를 썼다."
> >> spacing ( "친구와함께bmw썬바이저를썼다." , ignore = 'pre2' )
"친구와 함께 bmw 썬바이저를 썼다."
> >> spacing ( "chicken박스를열고닭다리를꺼내입에문다.crispy한튀김옷덕에내입주변은glossy해진다." , ignore = 'none' )
"chicken박스를 열고 닭다리를 꺼내 입에 문다. crispy 한튀김 옷 덕에 내 입 주변은 glossy해진다."
> >> spacing ( "chicken박스를열고닭다리를꺼내입에문다.crispy한튀김옷덕에내입주변은glossy해진다." , ignore = 'pre' )
"chicken박스를 열고 닭다리를 꺼내 입에 문다.crispy 한 튀김옷 덕에 내 입 주변은glossy 해진다."
> >> spacing ( "chicken박스를열고닭다리를꺼내입에문다.crispy한튀김옷덕에내입주변은glossy해진다." , ignore = 'post' )
"chicken박스를 열고 닭다리를 꺼내 입에 문다. crispy 한튀김 옷 덕에 내 입 주변은 glossy해진다."
> >> spacing ( "chicken박스를열고닭다리를꺼내입에문다.crispy한튀김옷덕에내입주변은glossy해진다." , ignore = 'pre2' )
"chicken박스를 열고 닭다리를 꺼내 입에 문다. crispy 한 튀김옷 덕에 내 입 주변은 glossy해진다."
> >> spacing ( "김형호영화시장분석가는'1987'의네이버영화정보네티즌10점평에서언급된단어들을지난해12월27일부터올해1월10일까지통계프로그램R과KoNLP패키지로텍스트마이닝하여분석했다." , ignore = 'none' )
"김형호 영화시장 분석가는 '1987'의 네이버 영화 정보 네티즌 10점 평에서 언급된 단어들을 지난해 12월 27일부터 올해 1월 10일까지 통계 프로그램 R과 KoNLP 패키지로 텍스트마이닝하여 분석했다."
> >> spacing ( "김형호영화시장분석가는'1987'의네이버영화정보네티즌10점평에서언급된단어들을지난해12월27일부터올해1월10일까지통계프로그램R과KoNLP패키지로텍스트마이닝하여분석했다." , ignore = 'pre' )
"김형호 영화시장 분석가는 '1987'의 네이버 영화 정보 네티즌 10점 평에서 언급된 단어들을 지난해 12월 27일부터 올해 1월 10일까지 통계 프로그램R과KoNLP 패키지로 텍스트마이닝하여 분석했다."
> >> spacing ( "김형호영화시장분석가는'1987'의네이버영화정보네티즌10점평에서언급된단어들을지난해12월27일부터올해1월10일까지통계프로그램R과KoNLP패키지로텍스트마이닝하여분석했다." , ignore = 'post' )
"김형호 영화시장 분석가는 '1987'의 네이버 영화 정보 네티즌 10점 평에서 언급된 단어들을 지난해 12월 27일부터 올해 1월 10일까지 통계 프로그램 R과 KoNLP 패키지로 텍스트마이닝하여 분석했다."
> >> spacing ( "김형호영화시장분석가는'1987'의네이버영화정보네티즌10점평에서언급된단어들을지난해12월27일부터올해1월10일까지통계프로그램R과KoNLP패키지로텍스트마이닝하여분석했다." , ignore = 'pre2' )
"김형호 영화시장 분석가는 '1987'의 네이버 영화 정보 네티즌 10점 평에서 언급된 단어들을 지난해 12월 27일부터 올해 1월 10일까지 통계 프로그램 R과 KoNLP 패키지로 텍스트마이닝하여 분석했다." 
@misc{heewon2018,
author = {Heewon Jeon},
title = {KoSpacing: Automatic Korean word spacing},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {url{https://github.com/haven-jeon/KoSpacing}}