Ein monolithisches/modulares X86-Betriebssystem + Benutzerspeicher mit Schwerpunkt auf der Wiederaufnahme und Erweiterung anderer Mainstream-Osen (hauptsächlich Linux), während sie dennoch API/ABI-kompatibel sind.
KOSMK4 (die 4. Wiedergabe der KOS-Betriebssystemserie) ist ein hausgemachtes, monolithisches, aber immer noch modularer Kernel für i386 und x86_64 (einschließlich des 32-Bit-Kompatibilitätsmodus) Maschinen und ist in C ++ geschrieben (aber nur zur Verwendung von Funktionen und Ausnahmen, die alle Abis-kompatiblen verwenden).
Es wurde mit vielen Tricks im Hülsen gestaltet, um beim Debuggen zu helfen, wie z. B. einem vollständig interaktiven Debugger, der Ihnen die Möglichkeit bietet, den Systemzustand interaktiv zu analysieren, wenn etwas schief geht, sowie die Unterstützung verschiedener Formen des Debuggens mit GDB.
Im Allgemeinen ist KOS nicht so konzipiert, dass das Rad erneut erfunden wird (keine Quadraträder hier), sondern versucht, das metaphorische Rad so gut wie möglich aussehen zu lassen. Was das bedeutet, ist das:
Hinweis : KOS verwendet Git -Submodules (die zum Erstellen von KOs erforderlich sind). Wenn Sie also die Download -Zip -Funktion verwenden, werden Sie nicht alles, was in das Erstellen von KOs einfließt, enden. Um Kos in seiner Gesamtheit zu klonen, müssen Sie diesen Git durch Verwendung von: klonen:
git clone --recursive https://github.com/GrieferAtWork/KOSmk4deemon magic.dee
Alle portierten Anwendungen können auf Ihrem KOS -Festplattenbild mit bash $PROJPATH/kos/misc/make_utility.sh i386 <UTILITY_NAME> installiert werden (siehe auch: Abrufen einer Shell)
catch (...)



./binutils/deemon/deemon magic.dee --emulator=qemu --gdb=emulator verwendet werden./binutils/deemon/deemon magic.dee --emulator=bochs --gdb=emulator verwendet werden./binutils/deemon/deemon magic.dee --emulator=vbox --gdb=emulator verwendet werden/kos/src/kernel/modgdbserver ) für Emulator-unabhängige und reale Debuggingboot=/dev/hda1/ ).init=/bin/initrdfsbase , rdgsbase , wrfsbase , wrgsbase%fs / %gs -Basisadressen bereitgestelltcmpxchg , cmpxchg8b , xaddcmovcc , cpuid , nop (Multi-byte)sfence , lfence , mfencemovbe , sarx , shlx , shrx , rorxpopcnt , tzcnt , lzcnt , pext , pdep , bzhi andnxbegin , xend , xabort , xtest (SA RTM unten)modrtm ), der für die softwarebasierte Emulation des eingeschränkten Transationsspeichers verwendet werden kann.modrtm -Treiber den Benutzer-Raum-Code in einer kleinen Sandkiste vorübergehend emuliert, aus der alle Änderungen sammeln, die vom Benutzer-Raum-Programm vorgenommen wurden, bevor er sie gleichzeitig auf einmal anwendet (in Bezug auf andere RTM-Vorgänge, die versuchen, dieselben Speicherregionen zu ändern)/kos/include/kos/rtm.h#UD sehen könnenlibvm86 ermöglicht es für Real-Mode-ähnliche BIOS-Aufrufe, die noch aus einer kontrollierten 64-Bit-Umgebung getätigt werden können (sie verwendet softwarebasierte Anweisungsemulation, die über meinen hausgemachten X86-Emulator libemu86 entsandt wird)bash $PROJPATH/kos/misc/make_toolchain.sh x86_64-kos )fxsave / fxrstorinvlpg (TLB-Shootdowns)hlt -Basis im Leerlauf (dh keine CPU -Zyklen, wenn nichts passiert)struct sig abgeleitet sindfutex() -basierte Synchronisation Primitivevoid pit_interrupt() { ++time; yield(); } ) und stattdessen auf einer Hardware-TSC (Timestampcounter) basierendrdtsc , den APIC -Timer allein oder die Grube implementiert werdentsc_deadline() , mit der ein TSC -Wert angegeben werden kannIA32_TSC_DEADLINE APIC+ rdtsc schreibenif (NOW >= CURRENT_DEADLINE) DO_INTR(); else tsc_deadline(CURRENT_DEADLINE); somit kontinuierlich die APIC/PIT -Nachladewerte aktualisieren, bis die tatsächliche Frist abgelaufen ist(NOW - TIME_WHEN_THREAD_STARTED_WAITING) / NUM_RUNNING_THREADS , was bedeutet, dass Threads, die die meiste Zeit damit verbringen, zu warten (dh interaktive Threads), automatisch einen großen Performance -Boost erhaltentsc_deadline() auf NOW + (NOW - TIME_WHEN_THREAD_STARTED_WAITING) / NUM_RUNNING_THREADS gesetztram=[{ "type": "ram", "start": 0x1234, "size": 0x4567 }] Befehlszeilenoptionlibjson )iopl() und ioperm() (so dass alle 65536 Ports pro Thread gesteuert werden können)ioperm() nicht wie unter Linux implementiert ist, was ein memcpy() ausführt, wenn ein Thread vorbezahlt wird. Stattdessen verwendet KOS Lazy Page Directory-Zuordnungen, um die TSS.IOBM Speicherregion beim Wechsel zwischen verschiedenen Threads neu zu machen, und stellt die Zuordnung wieder her, sobald eine der IO-Instruktionen einen #PF verursacht.ioperm() sowohl minimal ist als auch zunehmend, wenn IOPORTs mit größerem Zahlen verwendet werden (was erneut unter Linux der Fall wäre).invpcid (ausgewählt mit cpuid )invlpg (ausgewählt mit cpuid )PGE Global Pages (ausgewählt mit cpuid )P32 (normal) und PAE Paging auf i386 (ausgewählt mit cpuid )PAE.2MiB und P32.4MiB große Seiten (ausgewählt mit cpuid , wurden automatisch verwendet, wenn Speicherzuordnungen dies zulassen.PAE.XD (ausführbar) (ausgewählt mit cpuid )P64 (4-Level) Paging auf x86_64P64.2MiB und P64.1GiB große Seiten (die später mit cpuid ausgewählt)P64.NX (no-execute) (ausgewählt mit cpuid )mmap() mit Unterstützung für faul initialisierte und Schreibback-Dateizuordnungenlibemu86 )movl $SOME_ADDRESS, OFFSETOF_REGISTER_MAP_EIP als Alias für jmp SOME_ADDRESS durchführen, buchstäblich machenmmap("/dev/urandom") buchstäblich in der Lage sind, und das Ergebnis ist eine Speicherzuordnung, bei der jede Lektüre, unabhängig davon, wo nicht hergestellt wird, bei jedem Herstellungswert einen zufälligen Wert zurückgibt.heap_alloc() : RAW Heap Allocators (müssen die Größe angeben, wenn der Speicher freigeht)kmalloc() verwendetmman_map_kram() (das Kerneläquivalent von mmap() ), um ganze Seiten zuzuweisenslab_kmalloc() : Slab Allocator -Unterstützungkmalloc() verwendetrealloc() -able ist (also krealloc() muss es als malloc()+memcpy()+free() für Platten nachahmen)kmalloc() : Ziemlich genauso wie der Benutzer-Raum malloc() , nimmt aber eine Reihe von Flags, die sein Verhalten beschreibenkmalloc() bringt eine Ausnahme ( E_BADALLOC ) aus, wenn die Zuweisung fehlschlägtkmalloc_nx() kehrt NULL zurück, wenn etwas schief ging ( nx stand für NoExcept )O_DOSPATH und AT_DOSPATH um festzustellen, dass ein bestimmter Pfad mithilfe der DOS -Semantik interpretiert werden sollteDOSPATH System fsmode(2)S_ISBLK() ) als auch charakter ( S_ISCHR() ) -Devices)/dev )/tmp )/proc/[pid]/... )/proc/self/proc/[pid]/exe/proc/[pid]/fd/[fdno]int 80hlcall $7, $0 (wie von SYSV vorgeschrieben)lcall $7, $<sysno> verwenden, anstatt %eax verwenden zu müssensysentersyscallint 80h/kos/include/kos/ukern.h:userkern_syscall() )./kos/src/kernel/modsctrace und /kos/src/libsctracecall __i386_syscall um einen Systemanruf syscall KOS durchzuführen.free Speicherabschnitts innerhalb des Kerns, der alles enthält, was nur während der Initialisierung verwendet wird (z. B. der anfängliche Bootloader -Einstiegspunkt des Kernels oder den Codes für Geräteinitialisierungs -Initialisierungen)if -Statement und jede Verwendung von likely / unlikely in einer Kernel -Quelldatei, welche der Zweige, wie oftlikely / unlikely Anmerkungen, die einfach nur falsch sinddd und es starten lassen (oder im Falle eines Emulators: Montieren Sie die Binärdatei als rohe, bootfähige Scheibenbild)./kos/src/kernel/core/arch/i386/boot/_boot0.S/dev/mem , /dev/kmem , /dev/port/dev/null , /dev/zero , /dev/full/dev/random , /dev/urandom/dev/kmsg/dev/tty )off_t , pos_t )time_tsignal() , raise()pipe()fork() , exec()open() , openat()[p]read() , [p]write() , lseek()[f]realpath[at]()/kos/include )))SIGTTIN und SIGTTOU )dup2(1, 0x7fff1234) dürfene[0m )$PROJPATH/kos/misc/make_utility.sh i386 ncurses ) libcurses und nano laufen lassenpipe() und terminalen Kanonpuffern sowie Sockets verwendet werdenreadelf -rW /lib/i386-linux-gnu/libc.so.6 ?libc.so So zähle ich 14 Umzug (aber meine hat immer noch die gleiche Funktionalität mit fast 100% API-Kompatibilität und mindestens 95% Abi-Kompatibilität). Und das erwähnt nicht einmal alle Erweiterungen in Kos 'libc, sondern fehlt bei GLIBC.strend() in einer wirklich tragbaren (wie in: nicht an Kos gebundenen) Weise bereitzustellenmemcpy() und Freunde<stdio.h> , <stdlib.h> , <malloc.h> , <string.h> , <uchar.h> , ...<format-printer.h> , <unicode.h> , <kos/futex.h> , ... ' und " Flucht).debug_info , .debug_line , .debug_... to ...__thread ) GedächtnisR_386_JMP_SLOT )dlopen() , dlsym() , dlclose()RTLD_NEXTdlgethandle() )dlmodulename() )dlmodulefd() )fdlopen() )dllocksection() )dlmalloc() -Funktionram=[{ ... }, ...] Option)structKEY_* aus <kos/keyboard.h> ) und Schlüsselmodifikatoren in Unicode -Zeichen, die den gedrückten Tasten entsprechen<libkeymap/keymap.h> dokumentiert ist/kos/src/misc/keymaps/* bereitgestellt<regex.h> -Header in libc.so zu implementierensys_open(filename: "/lib64/libc.so", oflags: O_RDONLY|O_CLOEXEC)struct termios unterstützt.eh_frame -Basis-Abwicklung des Stapels, sowohl im Benutzerraum als auch im Kernelraum/kos/misc/libgen/cfi/compiler.dee:compileExpression() verwendet werden können.vio.c und hw_illegal_instruction.c noch nicht genug wäre)E_SEGFAULT werfen, sodass die Ausnahme genauso wie einen Zugang einer nicht kartierten Adresse behandelt werden kann.make_utility installieren können) auch verwenden, um den PCI-Anbieter/Geräteamen anzuzeigen./kos/include/* aufgedeckt wird, muss überprüfen, ob __CRT_HAVE_{name} definiert ist<libmylibrary/...> befinden und muss immer eine Datei <libmylibrary/api.h> enthalten, die die gemeinsame aufgerufene Konvention sowie den Namen dlopen(3) für die Bibliothek sowie eine Konfigurationsoption LIBMYLIBRARY_WANT_PROTOTYPES definiert typedef int ( LIBMYLIBRARY_CC * PNAME_OF_EXPORTED_FUNCTION )( int x , int y );
#ifdef LIBMYLIBRARY_WANT_PROTOTYPES
LIBMYLIBRARY_DECL int LIBMYLIBRARY_CC name_of_exported_function ( int x , int y );
#endif /* LIBMYLIBRARY_WANT_PROTOTYPES *//kos/include/* sollte automatisch mit /kos/misc/magicgenerator/generate_headers.dee generiert werden/kos/include/hybrid/* dürfen keine gegenseitigen Abhängigkeiten für andere Dateien als /kos/include/__std(cxx|inc).h und /kos/include/compiler/* haben/kos/.clang-format ist nicht perfekt:/kos/include/hybrid/* verfügbar sind. Andernfalls prüfen Sie immer, ob das Bausteil mit __has_builtin() vorhanden ist (Mach dir keine Sorgen, dass GCC __has_builtin() nicht bereitstellt, die KOS -Header können dieses Makro für GCC nachahmen)__builtin_va_list , __builtin_va(start|end|copy|arg)(...)__builtin_prefetch(addr)__builtin_choose_expr(cond, tt, ff)cond ? tt : ff wenn __NO_builtin_choose_expr definiert ist)__builtin_offsetof(struct, field)__builtin_expect(expr, expected)__builtin_unreachable()__builtin_assume(expr)expr immer wahr ist (hauptsächlich als Ersatz für assert() , denn wenn Sie wirklich schnelle Code erhalten möchten und die expr nicht interessieren. Verwenden Sie mit Vorsicht, und denken Sie daran, dass es sich möglicherweise um eine No-Op-Op-Op-Auswirkung handelt.__NO_builtin_assume , wenn es nur ein No-op ist__builtin_constant_p(expr) (kann emuliert werden, um immer auf false zu bewerten)__NO_builtin_constant_p wenn nicht unterstützt__restrict__restrict Standard restrict restrict definiert__restrict und lassen__builtin_types_compatible_p(T1, T2) (stumpf, immer zurückzugeben 0 )__NO_builtin_types_compatible_p wenn nicht unterstützt<__stdinc.h> enthält oder einen weiteren Header umfasst, der ihn bedingungslos umfasst (dieser Header wird verwendet, um die gesamte Arbeit zu erledigen, eine gemeinsame Cross-Compiler-Basis verfügbarer Merkmale zu erstellen)#ifdef __CC__ block ( CC standing C/C++-Compiler)/kos/include/[__]OFFSET_MYSTRUCT_MYFIELD and [__]SIZEOF_MYSTRUCT macros describing the absolute offsets of certain fields$PROJPATH/kos/src/_verify/[arch/(i386|...)/]assert_types.ctcc from inside of KOS after also having installed KOS system headers.MYOBJ_IOC_COMMAND ioctls from files in /kos/include/kos/ioctl/ Anforderungen:
$PATH , this will automatically be downloaded + configured + build by: bash $PROJPATH/kos/misc/make_toolchain.sh i386-kos Don't worry: the install location will still be contained within the KOS source tree. More specifically, the deemon executable will end up as $PROJPATH/binutils/deemon/deemon[.exe]$PROJPATH/binutils/i386-kos/bin/i686-kos-*[.exe]bash $PROJPATH/kos/misc/make_toolchain.sh i386-kos$PATH . otherwise, add the location to the enumerateQEmuInstallationLocations() function in $PROJPATH/kos/misc/magicemulator/qemu.dee )make (obviously...)wget (to download 3rd party packages, including binutils and gcc)mpfr , gmp , mpclib (needed for building gcc)patch (for patching 3rd party packages to better understand KOS)gdb (if you wish to debug KOS)mpfr / gmp / mpclib (as needed for building gcc), I had to do: apt-get install libmpc-devBuilding KOS (from $PROJPATH):
./binutils/deemon/deemon magic.dee --build-only --target=i386 --config=ODRunning KOS (from $PROJPATH):
./binutils/deemon/deemon magic.dee --run-only --target=i386 --config=ODBuilding+Running KOS (from $PROJPATH):
./binutils/deemon/deemon magic.dee --target=i386 --config=OD Be careful if you're using an outdated version of deemon . I (GrieferAtWork) am the BDFL for it, as well as KOS, and it already happened more than once that I fixed/added something in/to deemon because I needed it for use with the KOS toolchain. So if something's not working, try to re-build deemon for the $DEEMON_VERSION declared in kos/misc/make_toolchain.sh , and if that also isn't working, try using the most recent version of deemon. One or the other should be working, and if not, create an issue for it and I'll see if I can help.
Just like its predecessors, KOS mk4 uses busybox to provide you with the full user-space bash-like shell experience (Personally, I'm really only interested in the whole kernel-space side of hobby OS programming, alongside the design and implementation of user-space libraries). When it comes to front-ends (and yes: I'm calling a commandline a front-end; deal with it puts-on-sunglasses ), I loose all interest.
However, I made it as simple as ever for you to get going with an installation of busybox onto your KOS disk image:
# Make sure that you've already set up the KOS toolchain
bash $PROJPATH /kos/misc/make_toolchain.sh i386-kos
# Make sure that you've built the entirety of KOS at least once (here: in no-optimize-debug mode)
deemon $PROJPATH /magic.dee --target=i386 --config=nOD --build-only
# Do the actual work of downloading, configuring & building busybox
bash $PROJPATH /kos/misc/make_utility.sh i386 busybox Das war's. That last command will download, build & install busybox into every i386 KOS disk image that it can find under $PROJPATH/bin/... , also meaning that if you choose to clear out $PROJPATH/bin (or have just build KOS for a specific configuration for the first time), you will have to ensure that magic.dee was run at least once for your intended configuration, followed by re-executing the make_utility.sh command.
The plan is to add more software to make_utility.sh in the future, so that you'll be able to install select third-party software with this easy-to-use method of building them.
If you have any suggestions for software (or even better: code snippets for use in make_utility.sh alongside any required patch files), feel free to send them to me and I might add them so that everyone can use them.
Like already mentioned in Ported Applications, building 3rd party programs/libraries for use with KOS is done by invoking the $PROJPATH/kos/misc/make_utility.sh script.
I'd also like to recommend that you dont run make_utility.sh as root. While I'm doing my best to get utilities to behave and not try to copy files into host system paths, given that these aren't my projects, I can't guaranty that some of them might still try to do this in certain situations. As such, by running make_utility.sh as a normal user, 3rd party configure+make scripts won't be able to modify/write files in host system paths.
However, building 3rd party programs sometimes requires additional utilities to be installed. In most cases, these utilities can be read from error messages, however here's a list of some that you'll be needing for quite a few of them:
autoconf + automake + libtool (for projects that don't come with a ready-made ./configure script, but instead the raw configure.ac )cmake (for cmake-based projects)gperf (currently only needed by fontconfig )perl (currently only needed by openssl ) I neither have the time nor will to make sure that any kind of build environment works.
So with that in mind, I can only recommend you'd use the same one I'm using:
If that's not to your liking, you can also try to mirror the environment used in .github/workflows/build-i386-kos-nOD.yml , which essentially just uses linux.
The magic.dee file found in $PROJROOT is the primary controller for doing anything with KOS (you can just think of it as my version of make )
If the file extension (and the use of deemon for starting) wasn't enough, it's a deemon script.
To help you understand how this script works to do what it does, here is a documentation about its options:
-1-v , --verbose-E , -S-E preprocessor output files-S assembler input files--run-only--build-only-fRebuild kernel in Visual Studio--format-error-messagesfile:line[:column]:... into what is accepted by Visual Studio's file(line[,column]) : ... format (allowing you to click such lines within build output)--install-sh$DESTDIR (see also Installing KOS)--deemon magic.dee -- init=/bin/system-test will run system-test after boot instead of /bin/init-n=N (Defaults to -n=<number-of-cores-on-your-machine> )N--emulator=NAME (Defaults to --emulator=qemu )NAME must be one of qemu , bochs or vbox--changed=FILENAMEFILENAME has changedFILE is interpreted relative to the PWD set when magic.dee got invoked--gdb=MODE (Defaults to not-given)MODE must be one ofserver : Use the builtin GDB server driveremulator : Use the emulators's builtin GDB stub (not supported by all emulators)tcp:localhost:1234 on your machine--emulator-started-pattern=TEXTTEXT to stdout when the emulator is started (needed for syncing with Visual Studio)--target=TARGET (Defaults to automatic detection; see below)TARGET (which must be one of i386 , x86_64 , ...)--config=CONFIG (Defaults to automatic detection; see below)OD and nOD , so there is a high chance that the other two configurations won't even build...--gen=FILEFILE instead of executing everythinglibc.so and libm.so as part of make_toolchain.shFILE is interpreted relative to the PWD set when magic.dee got invoked--gengroup=NAMENAME , as well as steps for dependencies of a group NAMEdeemon magic.dee --gengroup=libs.libc )--gengroup-of=FILE--gengroup=... , but instead of specifying the name of some group, only a source file is givenFILE , then forming a set of all of the groups of those files, before finally running all steps and dependencies of those groupsFILE is interpreted relative to the PWD set when magic.dee got invokedFILE should be passed as the file that is currently opened, allowing you to quickly build (only) the part of the system that you currently have opened.$PROJPATH/kos/misc/build/vsautoconfig.dee--regen=PATTERN--gen=... , but select files using a regular expression patternPATTERN doesn't get formatted according to the PWD set when magic.dee got invoked--driver=NAME[:NAME] , --driver=NAME,CMDLINENAME into the kernel during boot, where NAME is either the driver's filename within $PROJPATH/bin/$TARGET-kos-$CONFIG/os/drivers/ , or a filename within the host filesystem if it contains any slashesCMDLINE may be given, which is then passed to the driver during initializationdeemon magic.dee --driver=usb-storage:usb , deemon magic.dee --driver=usb:usb-storageusb is a dependency of usb-storage , and the initialization order is always:usbusb-storagedeemon magic.dee --driver=usb-storageusb driver is missing $PROJPATH/bin/$TARGET-kos expands to $TARGET-kos-$CONFIG .$PROJPATH/bin/$TARGET-kos/lib is set up as part of the library path used by things such as -lc flags.--target=$TARGET and --config=$CONFIG$PROJPATH/bin/$TARGET-kos/...$PROJPATH/bin/$TARGET-kos-$CONFIG/...$PROJPATH/kos/include/$TARGET_XARCH-kos/...$PROJPATH/kos/src/[...]/$TARGET_XARCH/...TARGET_XARCH = $TARGET == "x86_64" ? "i386" : $TARGET --target=... and --config=... options$PROJPATH/kos/.vs/ProjectSettings.json (which is automatically created and updated by Visual Studio to always reflect the currently selected build configuration) Many KOS system features can be configured before you start building KOS for real. For this purpose, you can create custom configurations (or use the one of the 4 default configurations). Configurations are created by you writing a new header file /kos/include/kos/config/configurations/myconfig.h . For more information on the contents of this file, see the associated README.md.
Files in this folder are interpreted as configurations, which can then be used with magic.dee to build KOS using your custom configuration.
deemon magic.dee --target=i386 --config=myconfig Additionally, custom configurations also appear in VS/VSC project files (though only once you re-generate them). For this, you can simply re-run make_toolchain.sh for any configuration, or directly execute the relevant script ( deemon kos/misc/config/files.dee ).
Build files, binary output, as well as disk images all exist on a per-configuration basis, meaning that after creating a new configuration, you will have to re-install 3rd party library into the new disk images, as well as allow KOS to be re-build from scratch (this is automatically done by magic.dee ).
As such, when executed, your custom config will produce files under the following paths:
/build/i386-kos-myconfig (temporary build files)/bin/i386-kos-myconfig (generated binaries, including your disk image)The following configurations are provided by default:
| Name | Pretty name | Extra GCC commandline options |
|---|---|---|
nOD | DEBUG | -fstack-protector-strong |
nOnD | NDEBUG | -DNDEBUG |
OD | Optimize, DEBUG | -O2 -fstack-protector-strong |
OnD | Optimize, NDEBUG | -O3 -DNDEBUG |
To install (and eventually run) KOS on real hardware, the easiest way is to get a USB thumbdrive, format it as FAT32 (caution: make sure it doesn't get formatted as VFAT), and install GRUB or some other multiboot- or multiboot2-compliant bootloader onto it.
With that done, you can use the KOS build system to build everything you're going to need, as well as have it generate+execute some shell-scripts which can then be used to copy everything onto your USB thumbdrive:
export TARGET= " i386 "
export CONFIG= " nOD "
export DESTDIR= " /path/to/kos/install "
make install-system
make install-busybox If you don't want to use make , but execute the commands yourself, here is how installing works:
deemon magic.dee --install-sh --target=i386 --config=nOD > install.sh
bash kos/misc/make_utility.sh --install-sh i386 busybox >> install.sh This process can later be repeated for any 3rd party utility you wish to install. At this point, install.sh should look like this:
[...]
mkdir -p "$DESTDIR/os/drivers"
KOS_ROOT="${KOS_ROOT:-/cygdrive/e/c/kls/kos}"
cp "$KOS_ROOT/bin/i386-kos-nOD/os/drivers/tar" "$DESTDIR/os/drivers/tar"
mkdir -p "$DESTDIR/lib"
cp "$KOS_ROOT/bin/i386-kos-nOD/lib/libbios86.so" "$DESTDIR/lib/libbios86.so"
cp "$KOS_ROOT/bin/i386-kos-nOD/os/drivers/pe" "$DESTDIR/os/drivers/pe"
mkdir -p "$DESTDIR/bin"
cp "$KOS_ROOT/bin/i386-kos-nOD/bin/init" "$DESTDIR/bin/init"
cp "$KOS_ROOT/bin/i386-kos-nOD/os/drivers/procfs" "$DESTDIR/os/drivers/procfs"
[...]
ln -s "busybox" "$DESTDIR/bin/script"
ln -s "busybox" "$DESTDIR/bin/scriptreplay"
ln -s "busybox" "$DESTDIR/bin/setpriv"
ln -s "busybox" "$DESTDIR/bin/setsid"
ln -s "../bin/busybox" "$DESTDIR/sbin/swapon"
ln -s "../bin/busybox" "$DESTDIR/sbin/swapoff"
ln -s "../bin/busybox" "$DESTDIR/sbin/switch_root"
ln -s "busybox" "$DESTDIR/bin/taskset"
ln -s "busybox" "$DESTDIR/bin/umount"
ln -s "busybox" "$DESTDIR/bin/unshare"
ln -s "busybox" "$DESTDIR/bin/wall"
mkdir -p "$DESTDIR/etc"
ln -s "/proc/mounts" "$DESTDIR/etc/mtab"
Finally, you can execute this script like so (but make sure to replace /path/to/kos/install with where you mounted the USB thumbdrive on your host computer):
cat " install.sh " | DESTDIR= " /path/to/kos/install " bash Once this has been done, you should be able to boot KOS from within grub by loading it from /os/kernel.bin , whilst supplying it the necessary USB drivers as multiboot modules, so that it's able to detect the thumbdrive and mount it during booting.
Note that it's also possible to directly stream these build scripts into bash like so:
deemon magic.dee --install-sh --target=i386 --config=nOD | DESTDIR= " /path/to/kos/install " bash
bash kos/misc/make_utility.sh --recursive --install-sh i386 busybox | DESTDIR= " /path/to/kos/install " bash
bash kos/misc/make_utility.sh --recursive --install-sh i386 vitetris | DESTDIR= " /path/to/kos/install " bash
bash kos/misc/make_utility.sh --recursive --install-sh i386 nano | DESTDIR= " /path/to/kos/install " bash
...That way, you only need a single commandline to install each component.
You will need to install the C/C++ extension (just search for C++ under extensions)
Afterwards, make sure that make_toolchain.sh has already been executed at least once, as it will generate required configuration files for VS code.
Finally, use the Open Folder function to open the /kos sub-folder.
Make sure that make_toolchain.sh has already been executed at least once, as it will generate required configuration files for Visual Studio. Once this has been done, you can use the Open Folder function under the file-tab ( CTRL+SHIFT+ALT+O ) to open the /kos sub-folder. - DONT OPEN THE ACTUAL ROOT FOLDER (see notes below).
Alternatively (because Open Folder tends to be extremely laggy), you can also run make vs-proj , and open the /.vs/kos.sln file it generated. While this method fixes all of the slow-downs that appear when using Open Folder , take note of the following caveats:
make vs-proj , any changes you made will be overwrittenmake vs-proj (After doing this, VS will detect this and ask you to re-load its project files. When prompted to, confirm this reload)F5 ), you will not actually be debugging KOS, but will be debugging deemon as it is executing /magic.dee (though while it does so, deemon will still launch qemu and KOS as expected). To properly debug KOS, you have to do the following:CTRL+ALT+A to open the "Command Window"alias d Debug.MIDebugLaunch /Executable:foo /OptionsFile:MIOptions.xmld , followed by ENTERCTRL+SHIFT+B ) before running d from the "Command Window". If you fail to do so and run d immediately, you will actually launch whatever configuration you had selected previously. I personally use Visual Studio 2017 Community Edition for this, as it actually has a fairly unknown feature Open Folder which allows for a hacky way to get full support for GDB debugging without having to pay an insane sum of up to $340 for VisualGDB (I'm doing this as a hobby; I don't have that kind of money; Jeez: I could barely scrape together $10 if that was the asking price)
I mean seriously: Even when you scoure the osdev wiki you'll come across references to VisualGDB and VisualKernel, so I really don't understand who wrote that recommendation. - I don't think any of us bare-metal, kernel-development enthusiats (especially newcomers who could use a real, and simple to use integrated debugging experience the most) would be willing to pay that much...
Wie auch immer. - Even though practically no documentation on this feature of Visual Studio (of which you can get the Community Edition for free by the way) exists, I managed to get it working through trial and error.
And if you don't like Visual Studio (or aren't using Windows) I do know for a fact that Visual Studio Code also includes functionality for connecting to a GDB server/stub when you start diving into extensions
So here are your options:
tcp:localhost:1234 , and have qemu wait until something connects to it):deemon magic.dee --run-only --gdb=server --target=i386 --config=OD This one uses my own personal gdb server that gets loaded into the kernel as a driver. It offers out-of-the-box support for enumerating libraries, drivers, and running threads/processes (offering both multiprocess+ and QNonStop:1 functionality)deemon magic.dee --run-only --gdb=emulator --target=i386 --config=OD This one uses qemu's built-in gdb stub, which offers less functionality since it won't know how to enumerate threads created by the KOS scheduler, or list all of the libraries/drivers loaded into the kernel, meaning that tracebacks will only include source locations from the kernel core. This option is mainly meant for debugging things that happen before the GDB driver is loaded, or things that break the GDB stub driver itself (It's home-made and hacked together based on knowledge leared from observation, qemu's implementation, gdbserver, and bits and pieces of documentation from across the internet)$PROJPATH/kos folder and have all of this happen in 1 step when you press the debug buttongdb built for a generic i386 target and type target remote localhost:1234Anmerkungen:
$PROJPATH , but open $PROJPATH/kos instead. - Opening the former will not work properly and Visual Studio may even crash after a while since (at least for me) it seems unable to coax with the thousands of source files apart of binutils and gcc. And despite all of the methods that (supposedly) exist to have Visual Studio ignore certain paths within your source tree, all of them only function to hide folders from the Solution Explorer (despite their documentation claiming to also hide them from the source code scanners). So my solution was to move everything that's actually interesting to me into the $PROJPATH/kos sub-folder and always open that one when programming.make_toolchain.sh at least once to ensure that it was able to generate the file $PROJPATH/kos/.vs/launch.vs.json (this has to be done dynamically since it must contain some absolute paths depending on where your $PROJPATH is located at) (for this purpose, it's likely to work even if make_toolchain.sh fails, since the creation of this file is one of the first things it does) The KOS build system is quite complex, as KOS system headers depend on CRT feature definition files which it will automatically generate/update as features are added to, or removed from the kernel or libc.
Some parts of the system headers and libraries are automatically generated. This normally happens as part of invoking deemon magic.dee , which will check if changes happened to the sources of such files. (You can easily tell that a file is auto-generated by checking if it starts with /* HASH CRC-32:... */ )
Note however that you should not attempt to manually modify automatically generated pieces of code. - Doing so will cause the build system to refuse to overwrite your changes so-as to never accidentally delete them without you realizing what happened.
The most notable feature of the KOS build system is the way that it generates libc headers, as well as sources, inline-substitutions, and a few other files.
For this, the KOS system header folder contains crt feature files. These files are literally huge headers with thousands of #define s for every publicly exported symbol (they can be found in /kos/include/i386-kos/crt-features/crt-kos[-kernel].h ).
Using this system, KOS system headers will automatically determine the features provided by the linked libc, and fill in the gaps, thus offering a much more complete API experience, regardless of what the underlying libraries actually offer.
Now assuming that some functionality is missing from linked libraries, this manifests itself by the automatic function substitution system kicking in and providing local definitions (aka. static/inline functions) for pretty much everything found in system headers (eg memcpy is immediately implemented as an inline/static function in /kos/include/libc/local/string/memcpy.h ).
With these substitutions in place, libraries and the kernel can still be built, however will result in below-optimal code being generated, simple due to the rediculous amount of redundancies.
For more information about the header substitution system, and how it makes it possible to use KOS's headers for toolchains other than KOS itself (requiring only minor, to no modifications at all), take a look at the section on Automatic System Headers.
KOS supports emulated execution via one of the following emulators:
deemon magic.deedeemon magic.dee --emulator=qemuenumerateQEmuInstallationLocations() in $PROJPATH/kos/misc/magicemulator/qemu.dee (by default this list contains $PATH )deemon magic.dee --emulator=bochsenumerateBochsInstallationLocations() in $PROJPATH/kos/misc/magicemulator/bochs.dee (by default this list contains $PATH )deemon magic.dee --emulator=vboxenumerateVirtualBoxInstallLocations() in $PROJPATH/kos/misc/magicemulator/vbox.dee (by default this list contains $PATH ) KOS uses various interpreter/intermediate compilers for centralizing the definition, substitution, aliasing, binding, and documentation of most system headers containing definitions of functions exported from libc. (A similar system also exists for defining and updating system calls)
This system is tightly interwoven with the CRT feature files described in the section Notes on building KOS, and will automatically provide and substitute definitions for not only C-standard headers, but also a variety of others.
This is done via a custom function definition protocol implemented by a deemon program found in $PROJPATH/kos/misc/magicgenerator/generate_headers.dee , which when run, will parse and link the definition files from $PROJPATH/kos/src/libc/magic/*.c to gain knowledge of what goes where, how everything looks like, what annotations may be applied to functions, how functions are implemented, and so on...
As the end result, KOS is able to provide definitions for many header functions while simultaniously exporting them from both libc (and sometimes the kernel) in such a way that the possibility of mistakes happening due to redundancy falls away (eg all function prototypes of memcpy() are annotated with ATTR_NONNULL((1, 2)) , and despite this specific annotation existing in possibly more than 20 places, any changes to it would only require a single modification of the tags in /kos/src/libc/magic/string.c ).
Additionally, when using KOS headers with a CRT other than KOS, this makes it possible to substitute KOS-specific extensions such as strend() by automatically providing a local implementation of the function though /kos/include/local/string/strend.h , where this variant of the function is implemented identically to the variant exported by KOS's libc, meaning that in the event of changes having to be made to its implementation, all that's required is another single alteration in /kos/src/libc/magic/string.c .
In the end, thanks to the feature definition files (which basically just needs to contain a list of all the symbols exported from the CRT against which the hosted binary is to-be linked), 90% of the usual work of having KOS headers be hosted by some new libc will only require the addition of a new crt-features file, as well as making use of it in /kos/include/__crt.h , making the KOS toolchain extremely configurable, as well as versatile and portable. (That is: once you understand how everything fits together)
Another useful feature of this lies in the fact that it allows any source file to force the use of local definitions of certain functions, preventing that source file from becoming dependent on being linked against libc (being able to do this is required to build a dynamic linker, which couldn't very well do its job of linking if it had to link itself first...).
For example, an application could force the headers to provide a local implementation of sprintf() :
/* Load CRT features so we can modify them to our liking */
#include <__crt.h>
/* Delete sprintf() support from libc (`sprintf()' will now be
* defined with a local implementation that invokes `vsprintf()') */
#undef __CRT_HAVE_sprintf
/* Delete vsprintf() support from libc (`vsprintf()' will now be
* defined with a local implementation that invokes `format_vprintf()') */
#undef __CRT_HAVE_vsprintf
/* Delete format_vprintf() support from libc (`format_vprintf()' will
* now be implemented entirely within this compilation unit, and no
* longer be loaded from libc) */
#undef __CRT_HAVE_format_vprintf
/* The same procedure could now be repeated for all of the functions
* which may be called by `format_vprintf()', until eventually there
* won't be any trace left of the dependencies normally related to
* `sprintf()' */
#include <stdio.h>
/* This application does not have a dependency on libc:`sprintf' */
int main () {
char buf [ 64 ];
sprintf ( buf , "foo = %d" , 42 );
printf ( "%sn" , buf );
return 0 ;
} Note however, that some functions can't easily be substituted (eg open(2) ). As such, if a function appears in a header, but isn't provided by libc, nor has a local implementation, the function will simply not be defined (giving you a compile-time error, rather than having to wait for link-time).
Lastly, if there ever ends up being some gaping flaw in how KOS defines functions in headers, the fix will always be as simple as making a limited number of changes to the code generator scripts, instead of requiring millions of code locations to be updated, only to forget a hand full of them and have them lingering as dormant bugs to re-surface years in the future.
WARNING: NOTHING IN THE FOLLOWING SECTION IS LEGAL ADVICE, OR MAY BE CONSIDERED AS LEGALLY BINDING IN ANY SORT OF COURT! IT'S ONLY PURPOSE IS TO HELP CLARIFY HOW TO DEAL WITH CODE THAT IS LICENSED DIFFERENTLY!
Certain components of KOS, its (system-)headers, libraries, or some other component found as part of its source tree, as one is presented with in whatever form of distribution you may encouter it (KOS's source tree) in, may contain few parts that are not necessarily licensed under the ZLib license (the ZLib license being the primary license under which all of the new (as in: specifically written for the purpose of use with KOS) code falls)
One example for this would be the implementation of the libc function qsort() , as exported from the header <stdlib.h> , who's implementation has been lifted from Glibc (which is not licensed under ZLib, and as such requires derived code's direct (as in: static inclusion during linking, or automatic inline substitution during compilation, as opposed to dynamic linking at runtime) use in any derived software to also comply with its (Glibc's) license agreement)
For this purpose, note that the ZLib license is compatible with GPL (which is the license that applies to the aformentioned , meaning that use of KOS in its entirety in any product requires that product to comply with the requirements of both GPL, as well as ZLib.qsort() function)
For the purpose of using only parts of KOS (such as copy-pasting a piece of KOS-specific ( new ) code), it is usually sufficient to include a copy of the copyright notice that should be located at the top of the original source file, or can also be found in $PROJPATH/LICENSE , as well as include a reference (eg a link) to the original source (and git revision/commit id), and document the fact if changes have been made. However, once any code is included that is not part of the aformentioned KOS-specific ( new ) code (such code is plainly marked as such), you once again will have to comply to its specific copyright requirements as well.
Note that for this purpose, GPL was only mentioned as an example, but not as the rule, as other pieces of code may exist that use different licenses yet.
In practice this means that the KOS source tree, and its repository are required to remain open-source forever, thus complying with GPL, however other projects are allowed to lift KOS-specific code (and KOS-specific code only), and only have to comply with requirements stated by the ZLib license. (eg You could steal my pageframe allocator system and use it in a commercial kernel, so-long as you neither claim to have written it yourself, and as an extension: don't claim to have written everything in your project yourself, as well as take the blame when it does end up breaking for some reason at some point)
Another important distinction applies to GPL code that has been modified for the purpose of being made functional with KOS. Such code will always be marked as such and must be handled as falling under both the GPL, and the ZLib license (the original base code being GPL, and the changed made (ie an imaginary *.patch file) being ZLib), meaning that it (the end-product of the imaginary *.patch file), too, has to remain open-source, may not end up being used in commercial products, and any further changes made to it in the context of other projects will also have to be marked as such (in this case it sufficies to include all pre-exting copyright notices, before adding your own (GPL- and ZLib-compatible) license alongside a comment stating something something along the lines of Originally lifted from https://github.com/GrieferAtWork/KOSmk4/..., before changes were made to the original source material ) The exact changes are not required to be marked on a per-line basis, since the inclusion of a reference to the original source (alongside a git revision/commit id) would allow one to perform a diff between the two versions to determine changes made.