pinferencia
v0.2.1

簡單,但功能強大。
英語文檔| 中文文檔| 中文讀書我
把招工廣告。翻譯,說唱歌詞,都想要。隨意創建一個問題。
Pinferencia試圖成為有史以來最簡單的機器學習推理服務器!
額外的三條線,您的模型將在線。
使用GUI和REST API服務模型從未如此簡單。


如果你想
你在正確的地方。
Pinferencia功能包括:
pip install " pinferencia[streamlit] "pip install " pinferencia " 服務任何模型
from pinferencia import Server
class MyModel :
def predict ( self , data ):
return sum ( data )
model = MyModel ()
service = Server ()
service . register ( model_name = "mymodel" , model = model , entrypoint = "predict" )只是運行:
pinfer app:service
哇,您的服務還活著。訪問http://127.0.0.1:8501/並玩得開心。
有深度學習模型嗎?同樣容易。簡單火車或加載模型,然後在服務中註冊。立即活著。
擁抱臉
詳細信息:擁抱面管線 - 視覺
from transformers import pipeline
from pinferencia import Server
vision_classifier = pipeline ( task = "image-classification" )
def predict ( data ):
return vision_classifier ( images = data )
service = Server ()
service . register ( model_name = "vision" , model = predict )Pytorch
import torch
from pinferencia import Server
# train your models
model = "..."
# or load your models (1)
# from state_dict
model = TheModelClass ( * args , ** kwargs )
model . load_state_dict ( torch . load ( PATH ))
# entire model
model = torch . load ( PATH )
# torchscript
model = torch . jit . load ( 'model_scripted.pt' )
model . eval ()
service = Server ()
service . register ( model_name = "mymodel" , model = model )張量
import tensorflow as tf
from pinferencia import Server
# train your models
model = "..."
# or load your models (1)
# saved_model
model = tf . keras . models . load_model ( 'saved_model/model' )
# HDF5
model = tf . keras . models . load_model ( 'model.h5' )
# from weights
model = create_model ()
model . load_weights ( './checkpoints/my_checkpoint' )
loss , acc = model . evaluate ( test_images , test_labels , verbose = 2 )
service = Server ()
service . register ( model_name = "mymodel" , model = model , entrypoint = "predict" )任何框架的任何模型都將以相同的方式工作。現在運行uvicorn app:service --reload並享受!
如果您想貢獻,細節在這裡