pinferencia
v0.2.1

简单,但功能强大。
英语文档| 中文文档| 中文读书我
把招工广告。翻译,说唱歌词,都想要。随意创建一个问题。
Pinferencia试图成为有史以来最简单的机器学习推理服务器!
额外的三条线,您的模型将在线。
使用GUI和REST API服务模型从未如此简单。


如果你想
你在正确的地方。
Pinferencia功能包括:
pip install " pinferencia[streamlit] "pip install " pinferencia " 服务任何模型
from pinferencia import Server
class MyModel :
def predict ( self , data ):
return sum ( data )
model = MyModel ()
service = Server ()
service . register ( model_name = "mymodel" , model = model , entrypoint = "predict" )只是运行:
pinfer app:service
哇,您的服务还活着。访问http://127.0.0.1:8501/并玩得开心。
有深度学习模型吗?同样容易。简单火车或加载模型,然后在服务中注册。立即活着。
拥抱脸
详细信息:拥抱面管线 - 视觉
from transformers import pipeline
from pinferencia import Server
vision_classifier = pipeline ( task = "image-classification" )
def predict ( data ):
return vision_classifier ( images = data )
service = Server ()
service . register ( model_name = "vision" , model = predict )Pytorch
import torch
from pinferencia import Server
# train your models
model = "..."
# or load your models (1)
# from state_dict
model = TheModelClass ( * args , ** kwargs )
model . load_state_dict ( torch . load ( PATH ))
# entire model
model = torch . load ( PATH )
# torchscript
model = torch . jit . load ( 'model_scripted.pt' )
model . eval ()
service = Server ()
service . register ( model_name = "mymodel" , model = model )张量
import tensorflow as tf
from pinferencia import Server
# train your models
model = "..."
# or load your models (1)
# saved_model
model = tf . keras . models . load_model ( 'saved_model/model' )
# HDF5
model = tf . keras . models . load_model ( 'model.h5' )
# from weights
model = create_model ()
model . load_weights ( './checkpoints/my_checkpoint' )
loss , acc = model . evaluate ( test_images , test_labels , verbose = 2 )
service = Server ()
service . register ( model_name = "mymodel" , model = model , entrypoint = "predict" )任何框架的任何模型都将以相同的方式工作。现在运行uvicorn app:service --reload并享受!
如果您想贡献,细节在这里