关于大语言模型代理的必读论文。
“这是您可能感兴趣的其他一些纸质清单:
提示4 ReasoningPaper:通过语言模型提示论文的推理。
?知识培训:关于大语模型的知识编辑的必读论文。
我们真诚地邀请您深入研究这些论文和资源的收藏,每个论文和资源都提供了独特的探索和发现旅程。 ?”
互动自然语言处理
Zekun Wang, Ge Zhang, Kexin Yang, Ning Shi, Wangchunshu Zhou, Shaochun Hao, Guangzheng Xiong, Yizhi Li, Mong Yuan Sim, Xiuying Chen, Qingqing Zhu, Zhenzhu Yang, Adam Nik, Qi Liu, Chenghua Lin, Shi Wang, Ruibo Liu, Wenhu Chen,Ke Xu,Dayiheng Liu,Yike Guo,Jie Fu。 [ABS],2023.5
一项基于大语言模型的自主代理的调查
Lei Wang,Chen Ma,Xueyang Feng,Zeyu Zhang,Hao Yang,Jingsen Zhang,Zhiyuan Chen,Jiakai Tang,Xu Chen,Yankai Lin,Wayne Zhao Zhao,Zhewei Wei,Ji-Rong Wen。 [ABS],2023.8
基于大语模型的代理人的兴起和潜力:调查
Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang刘,Zhangyue Yin,Shihan Dou,Rongxiang Weng,Wensen Cheng,Qi Zhang,Wenjuan Qin,Yongyan Zheng,Xipeng Qiu,Xuanjing Huang,Tao Gui。 [ABS],2023.9
如果LLM是向导,那么代码是魔杖:关于代码如何赋予大型语言模型的调查
Ke Yang,Jiateng Liu,John Wu,Chaoqi Yang,Yi R. Fung,Sha Li,Zixuan Huang,Xu Cao,Xingyao Wang,Yiquan Wang,Heng Ji,Chengxiang Zhai。 [ABS],2024.1
代理AI:测量多模式相互作用的视野
Zane Durante,Qiuyuan Huang,Naoki Wake,Ran Gong,Jae Sung Park,Bidipta Sarkar,Rohan Taori,Yusuke Noda,Demetri Terzopoulos,Yejin Choi,Yejin Choi,Katsushi Ikeuchi,Hoi Ikeuchi,Hoi vo,Li Fei Fei-Fei,Jianfeng Gao,Jianfeng Gao。 [ABS],2024.1
个人LLM代理:有关功能,效率和安全性的见解和调查
Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng Liu, Wenxing Xu, Xiang Wang, Yi Sun, Rui Kong, Yile Wang, Hanfei Geng, Jian Luan, Xuefeng Jin, Zilong Ye, Guanjing Xiong, Fan Zhang, Xiang Li, Mengwei Xu,Zhijun Li,Peng Li,Yang Liu,Ya-Qin Zhang,Yunxin Liu。 [ABS],2024.1
神经法规智能的调查:范式,进步及以后
Qiushi Sun,Zhirui Chen,Fangzhi Xu,Kanzhi Cheng,Chang Ma,Zhangyue Yin,Jianing Wang,Chengcheng Han,Renyu Zhu,Shuai Yuan,Shuai Yuan,Qipeng Guo,Qipeng Guo,Qiiu,Xipeng Qiu,Xengcheng Yin,Peengcheng Yin,fei Yian,Ziaoli Li,Ziaygian,Ziapen,lingipen,lingpen,lingpen,吴。 [ABS],2024.3
精神理论可能自发地出现在大语言模型中
Michal Kosinski。 [ABS],2023.2
chatgpt中的毒性:分析人格分配的语言模型
Ameet Deshpande,Vishvak Murahari,Tanmay Rajpurohit,Ashwin Kalyan,Karthik Narasimhan。 [ABS],2023.4
用大语言模型玩重复的游戏
Elif Akata,Lion Schulz,Julian Coda-Forno,Seong Joon Oh,Matthias Bethge,Eric Schulz。 [ABS],2023.5
专家宣传:指导大型语言模型成为杰出的专家
Benfeng Xu,Yang,Junyang Lin,Quan Wang,Chang Zhou,Yongdong Zhang,Zhendong Mao。 [ABS],2023.5
大型语言模型的角色扮演
Murray Shanahan,Kyle McDonell,Laria Reynolds。 [ABS],2023.5
Tidybot:大型语言模型的个性化机器人协助
Jimmy Wu,Rika Antonova,Adam Kan,Marion Lepert,Andy Zeng,Shuran Song,Jeannette Bohg,Szymon Rusinkiwiewicz,Thomas Funkhouser。 [ABS],2023.5
大语言模型中的人格特征
Mustafa Safdari,Greg Serapio-García,ClémentCrepy,Stephen Fitz,Peter Romero,Luning Sun,Marwa Abdulhai,Aleksandra Faust,MajaMatarić。 [ABS],2023.7
LLM有个性吗?使MBTI测试成为大型语言模型的惊人评估
Keyu Pan,Yawen Zeng。 [ABS],2023.7
人工智能中的意识:意识科学的见解
Patrick Butlin, Robert Long, Eric Elmoznino, Yoshua Bengio, Jonathan Birch, Axel Constant, George Deane, Stephen M. Fleming, Chris Frith, Xu Ji, Ryota Kanai, Colin Klein, Grace Lindsay, Matthias Michel, Liad Mudrik, Megan AK Peters, Eric Schwitzgebel, Jonathan Simon,鲁芬·范鲁伦(Rufin VanRullen)。 [ABS],2023.8
脱离上下文:衡量LLMS中的情境意识
Lukas Berglund,Asa Cooper Stickland,Mikita Balesni,Max Kaufmann,Meg Tong,Tomasz Korbak,Daniel Kokotajlo,Owain Evans。 [ABS],2023.9
大型语言模型代理可以模拟人类的信任行为吗?
Chengxing Xie,Canyu Chen,Feiran Jia,Ziyu Ye,Kai Shu,Adel Bibi,Ziniu Hu,Philip Torr,Bernard Ghanem,Guohao Li。 [ABS],2024.02
COLT5:具有条件计算的更快的远程变压器
Joshua Ainslie,Tao Lei,Michiel de Jong,SantiagoOntañón,Siddhartha Brahma,Yury Yury Zemlyanskiy,David Uthus,Mandy Guo,James Lee-Thorp,James Lee-Thorp,Yi Tay,Yun-Hsuan,Yun-Hsuan Sung,Sumit Sanghai。 [ABS],2023.3
大语言模型中的新兴和可预测的记忆
Stella Biderman,USVSN Sai Prashanth,Lintang Sutawika,Hailey Schoelkopf,Quentin Anthony,Shivanshu Purohit,Edward Raff。 [ABS],2023.4
具有自控内存系统的大规模语言模型的无限长度输入能力
Xinnian Liang,Bing Wang,Hui Huang,Shuangzhi Wu,Peihao Wu,Lu Lu,Zejun MA,Zhoujun li。 [ABS],2023.4
聊天案:录制和分析跨时间
Shangqing Tu,Chunyang Li,Jifan Yu,Xiaozhi Wang,Lei Hou,Juanzi Li。 [ABS],2023.4
学会推理和记住自称
Jack Lanchantin,Shubham Toshniwal,Jason Weston,Arthur Szlam,Sainbayar Sukhbaatar。 [ABS],2023.5
无形者:无限长度输入的远程变压器
Amanda Bertsch,Uri Alon,Graham Neubig,Matthew R. Gormley。 [ABS],2023.5
小型型号是大型语言模型的宝贵插件
Canwen Xu,Yichong Xu,Shuohang Wang,Yang Liu,Chenguang Zhu,Julian McAuley。 [ABS],2023.5
记忆库:增强具有长期记忆的大型语言模型
Wanjun Zhong,Lianghong Guo,Qiqi Gao,He Ye,Yanlin Wang。 [ABS],2023.5
Toolkengpt:通过工具嵌入使用大量工具来增强冷冻语言模型
Shibo Hao,Tianyang Liu,Zhen Wang,Zhiting Hu。 [ABS],2023.5
recurrentgpt:(任意)长文本的互动生成
Wangchunshu Zhou,Yuchen Eleanor Jiang,Peng Cui,Tiannan Wang,Zhenxin Xiao,Yifan Hou,Ryan Cotterell,Mrinmaya Sachan。 [ABS],2023.5
ret-llm:迈向大型语言模型的一般阅读写入记忆
Ali Modarressi,Ayyoob Imani,Mohsen Fayyaz,HinrichSchütze。 [ABS],2023.5
适应语言模型以压缩上下文
Alexis Chevalier,Alexander Wettig,Anirudh Ajith,Danqi Chen。 [ABS],2023.5
重新访问并行上下文窗口:令人沮丧的简单替代方案和经过思考链恶化
Kejuan Yang,小刘,Kaiwen Men,Aohan Zeng,Yuxiao Dong,Jie Tang。 [ABS],2023.5
具有里程碑意义的关注:变压器的随机访问无限上下文长度
Amirkeivan Mohtashami,Martin Jaggi。 [ABS],2023.5
随机位置编码增强变压器的长度泛化
Anian Ruoss,GrégoireDeLétang,Tim Genewein,Jordi Grau-Moya,RóbertCsordás,Mehdi Bennani,Shane Legg,Joel Veness。 [ABS],2023.5
长度概括的单调位置关注
Jishnu Ray Chowdhury,Cornelia Caragea。 [ABS],2023.5
CHATDB:用数据库作为其符号内存增强LLM
Chenxu Hu,Jie Fu,Chenzhuang DU,Simian Luo,Junbo Zhao,Hang Zhao。 [ABS],2023.6
语言代理的认知体系结构
Theodore Sumers,Shunyu Yao,Karthik Narasimhan,Thomas L. Griffiths [ABS],2023.9
JARVIS-1:带有内存增强多模式模型的开放世界多任务代理
Zihao Wang,Shaofei Cai,Anji Liu,Yonggang Jin,Jinbing Hou,Bowei Zhang,Haowei Lin,Zhaofeng HE,Zilong Zheng,Zilong Zheng,Yaodong Yang Yang,Xiaojian Ma,Yitao Liang 。 [ABS],2023.11
一项关于基于大语言模型代理的记忆机制的调查
Zeyu Zhang,Xiaohe BO,Chen MA,Rui Li,Xu Chen,Quanyu Dai,Jieming Zhu,Zhenhua dong,ji-rong wen 。 [ABS],2024.4
Hipporag:神经生物学启发了大语言模型的长期记忆
BernalJiménezGutiérrez,Yiheng Shu,Yu Gu,Michihiro Yasunaga,Yu Su。 [ABS],2024.5
思想缓冲:具有大语言模型的思想增强推理
Ling Yang,Zhaochen Yu,Tianjun Zhang,Shiyi Cao,Minkai Xu,Winao Zhang,Joseph E. Gonzalez,Bin Cui。 [ABS],2024,6
语言模型作为零拍的计划者:为具体代理提取可行的知识
Wenlong Huang,Pieter Abbeel,Deepak Pathak,Igor Mordatch 。 [ABS],2022.1
内部独白:通过使用语言模型进行计划的体现推理
Wenlong Huang , Fei Xia , Ted Xiao , Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda Luu, Sergey Levine, Karol Hausman, Brian Ichter . [ABS],2022.7
反应:在语言模型中协同推理和作用
Shunyu Yao,Jeffrey Zhao,Dian Yu,Nan Du,Izhak Shafran,Karthik Narasimhan,Yuan Cao。 [ABS],2022.10
思想的眼睛:通过模拟的基础语言模型推理
Ruibo Liu,Jason Wei,Shixiang Shane Gu,Te-Yen Wu,Soroush Vosoughi,Claire Cui,Denny Zhou,Andrew M. Dai。 [ABS],2022.10
LLM-Planner:具有大语言模型的具体代理的基础计划很少
Chan Hee Song,Jian Wu,Clayton Washington,Brian M. Sadler,Wei-Lun Chao,Yu Su 。 [ABS],2022.12
不要产生,歧视:将语言模型接地到现实世界环境的建议
Yu Gu,Xiang Deng,Yu su。 [ABS],2022.12
体现的代理商是否梦想着像素化绵羊的梦想?:使用语言指导世界建模的具体决策
Kolby Nottingham,Prithviraj Ammanabrolu,Alane Suhr,Yejin Choi,Hannaneh Hajishirzi,Sameer Singh,Roy Fox 。 [ABS],2023.1
描述,解释,计划和选择:与大语言模型的互动计划启用开放世界多任务代理
Zihao Wang,Shaofei Cai,Anji Liu,Xiaojian MA,Yitao Liang 。 [ABS],2023.2
Palm-E:一种具体的多模式模型
Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke,Karol Hausman,Marc Toussaint,Klaus Greff,Andy Zeng,Igor Mordatch,Pete Florence。 [ABS],2023.3
反射:语言加强学习的语言代理商
Noah Shinn,Federico Cassano,Beck Labash,Ashwin Gopinath,Karthik Narasimhan,Shunyu Yao。 [ABS],2023.3
与环境聊天:使用大语言模型的交互式多模式感知
Xufeng Zhao,Mengdi Li,Cornelius Weber,Muhammad Burhan Hafez,Stefan Wermter 。 [ABS],2023.3
PLAN4MC:开放世界的Minecraft任务的技能增强学习和计划
Haoqi Yuan,Chi Zhang,Hongcheng Wang,Feiyang Xie,Penglin Cai,Hao Dong,Zongqing Lu。 [ABS],2023.3
自我refine:迭代精致和自我反馈
Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, Peter克拉克。 [ABS],2023.3
向自我挑剔传授大型语言模型
Xinyun Chen,Maxwell Lin,NathanaelSchärli,Denny Zhou。 [ABS],2023.4
wizardlm:授权大语言模型遵循复杂的说明
Can Xu,Qingfeng Sun,Kai Zheng,Xiubo Geng,Pu Zhao,Jiazhan Feng,Chongyang Tao,Daxin Jiang。 [ABS],2023.4
frugalgpt:如何使用大语言模型,同时降低成本和提高性能
Lingjiao Chen,Matei Zaharia,James Zou。 [ABS],2023.5
思想树:大型语言模型的故意解决问题
Shunyu Yao,Dian Yu,Jeffrey Zhao,Izhak Shafran,Thomas L. Griffiths,Yuan Cao,Karthik Narasimhan。 [ABS],2023.5
计划,消除和跟踪 - 语言模型是体现代理商的好老师
Yue Wu,So Yeon Min,Yonatan Bisk,Ruslan Salakhutdinov,Amos Azaria,Yuanzhi Li,Tom Mitchell,Shrimai Prabhumoye 。 [ABS],2023.5
互动文本游戏的知识增强代理
Prateek Chhikara,Jiarui Zhang,Filip Ilievski,Jonathan Francis,Kaixin MA。 [ABS],2023.5
Voyager:具有大语言模型的开放式体现代理
Guanzhi Wang,Yuqi Xie,Yunfan Jiang,Ajay Mandlekar,Chaowei Xiao,Yuke Zhu,Linxi Fan,Anima Anandkumar 。 [ABS],2023.5
Swiftsage:一种具有快速和缓慢思考的生成代理,用于复杂的互动任务
Bill Yuchen Lin,Yicheng Fu,Karina Yang,Prithviraj Ammanabrolu,Faeze Brahman,Shiyu Huang,Chandra Bhagavatula,Yejin Choi,Xiang Ren。 [ABS],2023.5
语言模型符合世界模型:体现体验增强语言模型
Jiannan Xiang,Tianhua Tao,Yi Gu,Tianmin Shu,Zirui Wang,Zichao Yang,Zhiting Hu。 [ABS],2023.5
Minecraft中的幽灵:通过具有基于文本的知识和记忆的大语言模型,开放世界环境的通常具有能力的代理
Xizhou Zhu,Yuntao Chen,Hao Tian,Chenxin Tao,Weijie Su,Chenyu Yang,Gao Huang,Bin Li,Lewei Lu,Xiaogang Wang,Yu Qiao,Zhaoxiang Zhang Zhang,Jifeng Dai。 [ABS],2023.5
Adaplanner:反馈与语言模型的自适应计划
Haotian Sun,Yuchen Zhuang,Lingkai Kong,Bo Dai,Chao Zhang。 [ABS],2023.5
语言模型的推理是通过世界模型计划
Shibo Hao,Yi Gu,Haodi MA,Joshua Jiahua Hong,Zhen Wang,Daisy Zhe Wang,Zhiting Hu。 [ABS],2023.5
计划和解决提示:通过大型语言模型改善零击链链的推理
Lei Wang,Wanyu Xu,Yihuai Lan,Zhiqiang Hu,Yunshi Lan,Roy Ka-Wei Lee,Ee-Peng Lim。 [ABS],2023.5
实现代理与LLM之间的智能互动:一种加强学习方法
Bin Hu,Chenyang Zhao,Pu Zhang,Zihao Zhou,Yuanhang Yang,Zenglin Xu,Bin Liu。 [ABS],2023.6
递归:推荐系统的新型模拟范式
Lei Wang,Jingsen Zhang,Xu Chen,Yankai Lin,Ruihua Song,Wayne Xin Zhao,Ji-Rong Wen。 [ABS],2023.6
迈向具有基础模型的统一代理。
诺曼·迪·帕洛(Norman Di Palo),阿鲁库玛·拜拉万(Arunkumar Byravan),伦纳德·哈斯克勒(Leonard Hasenclever),马库斯·沃夫梅尔(Markus Wulfmeier),尼古拉斯·海斯(Nicolas Heess),马丁·里德米勒(Martin Riedmiller)。 [ABS],2023.7
pangu-coder2:通过排名反馈来提高代码的大型语言模型
Bo Shen,Jiaxin Zhang,Taihong Chen,Daoguang Zan,Bing Geng,An Fu,Muhan Zeng,Ailun Yu,Jichuan JI,Jingyang Zhao,Yuenan Guo,Qianxiang Wang。 [ABS],2023.7
一个现实世界中的涉及计划,长篇小说理解和程序综合
Izzeddin Gur,Hiroki Furuta,Austin Huang,Mustafa Safdari,Yutaka Matsuo,Douglas Eck,Aleksandra Faust。 [ABS],2023.7
改造器:具有政策梯度优化的回顾性大语言代理
Weiran Yao,Shelby Heinecke,Juan Carlos Niebles,Zhiwei Liu,Yihao Feng,Le Xue,Rithesh Murthy,Zeyuan Chen,Jianguo Zhang,Jianguo Zhang,Devansh Arpit,ran arpit,Ran Xu,Phil Mui,Phil Mui,Huan Wang,Caiming Ximing Xiong,Silvio Savarese。 [ABS],2023.8
自我检查:使用LLMS零射击检查自己的分步推理
Ning Miao,Yee Whye Teh,Tom Rainforth。 [ABS],2023.8
开除:LLM代理是经验学习者
Andrew Zhao,Daniel Huang,Quentin Xu,Matthieu Lin,Yong-Jin Liu,Gao Huang。 [ABS],2023.8
自我驱动的接地:具有自动语言对准技能学习的大型语言模型代理
Shaohui Peng,Xing Hu,Qi Yi,Rui Zhang,Jiaming Guo,Di Huang,Zikang Tian,Ruizhi Chen,Zidong du,Qi Guo,Yunji Chen,Ling Li。 [ABS],2023.9
JARVIS-1:带有内存增强多模式模型的开放世界多任务代理
Zihao Wang,Shaofei Cai,Anji Liu,Yonggang Jin,Jinbing Hou,Bowei Zhang,Haowei Lin,Zhaofeng HE,Zilong Zheng,Zilong Zheng,Yaodong Yang Yang,Xiaojian Ma,Yitao Liang 。 [ABS],2023.11
狮子座:3D世界中具有体现的通才特工
Jiangyong Huang,Silong Yong,Siaojian MA,Xiongkun Linghu ,Puhao Li,Yan Wang,Qing Li,Song-Chun Zhu,Baoxiong Jia,Siyuan Huang* [ABS],2023.11,
代码链:使用语言模型的代码模拟器推理
Chengshu Li,Jacky Liang,Andy Zeng,Xinyun Chen,Karol Hausman,Dorsa Sadigh,Sergey Levine,Li Fei-Fei,Fei Xia,Brian Ichter。 [ABS],2023.12
REST满足React:多步推理LLM代理的自我完善
Renat Aksitov,Sobhan Miryoosefi,Zonglin Li,Daliang Li,Sheila Babayan,Kavya Kopparapu,Zachary Fisher,Ruiqi Guo,Sushant Prakash,Pranesh Srinivasan,Manzil Zaheer,Felix Yu,Sanjiv Yu,Sanjiv Kumar。 [ABS],2023.12
自我对比:通过不一致的解决观点更好地思考
Wenqi Zhang,Yongliang Shen,Linjuan Wu,Qiuying Peng,Jun Wang,Yueting Zhuang,Weiming Lu。 [ABS],2024.01
自动手术:自动代理通过自我计划从头开始学习
Shuofei Qiao,Ningyu Zhang,Runnan Fang,Yujie Luo,Wangchunshu Zhou,Yuchen Eleanor Jiang,Chengfei LV,Huajun Chen。 [ABS],2024.01
TravelPlanner:与语言代理商的现实世界计划的基准
Jian Xie,Kai Zhang,Jiangjie Chen,Tinghui Zhu,Renze Lou,Yuandong Tian,Yanghua Xiao,Yu su。 [ABS],2024.02
Agent-Pro:学习通过政策级别的反思和优化发展
Wenqi Zhang,Ke Tang,Hai Wu,Mengna Wang,Yongliang Shen,Guiyang Hou,Zeqi Tan,Peng Li,Yueting Zhuang,Weiming Lu。 [ABS],2024.02
Knowagent:基于LLM的代理商的知识增强计划
Yuqi Zhu,Shuofei Qiao,Yixin OU,Shumin Deng,Ningyu Zhang,Shiwei Lyu,Yue Shen,Lei Liang,Jinjie Gu,Huajun Chen。 [ABS],2024.03
Sotopia-π:社会智能语言代理的互动学习
Ruiyi Wang,Haofei Yu,Wenxin Zhang,Zhengyang Qi,Maarten SAP,Graham Neubig,Yonatan Bisk,Hao Zhu。 [ABS],2024.03
自动化:大语模型代理的自动生成和选择国家感知指南
Yao Fu,Dong-Ki Kim,Jaekyeom Kim,Sungryull Sohn,Lajanugen Logeswaran,Kyunghoon Bae,Honglak Lee。 [ABS],2024.03
通过行动学习赋予大型语言模型代理
海廷赵,张马,吉琳·王,王苏,林彭·孔,吉金Xu,张洪邓,洪杨。 [ABS],2024.02
魔鬼的拥护者:LLM代理商的预期反思
Haoyu Wang,Tao Li,Zhiwei Deng,Dan Roth,Yang Li。 [ABS],2024.05
与世界知识模型的代理计划
Shuofei Qiao,Runnan Fang,Ningyu Zhang,Yuqi Zhu,Xiang Chen,Shumin Deng,Yong Jiang,Pengjun Xie,Fei Huang,Huajun Chen。 [ABS],2024.05
智能探索:站在巨型基础模型的肩膀上
康卢,申格兰胡,杰夫·克莱恩。 [ABS],2024.05
忠实的逻辑推理通过象征性思想链
Jundong Xu,Hao Fei,Liangming Pan,Qian Liu,Mong-Li Lee,Wynne Hsu。 [ABS],2024.05
爱丽丝梦游仙境:简单任务显示最先进的大语言模型中的完整推理故障
Marianna Nezhurina,Lucia Cipolina-Kun,Mehdi Cherti,Jenia Jitsev。 [ABS],2024.06
TextGrad:通过文本自动“差异”
Mert Yuksekgonul,Federico Bianchi,Joseph Boen,Sheng Liu,Zhi Huang,Carlos Guestrin,James Zou。 [ABS],2024.06
符号学习使自我发展的代理人
Wangchunshu Zhou,Yixin OU,Shengwei ding,Lon Li,Jialong Wu,Tiannan Wang,Jiamin Chen,Shuai Wang,Xiaohua Xu,Ningyu Zhang,Huajun Chen,Yuchen Eleanor Jiang。 [ABS],2024.06
OS-CopiLot:朝着具有自我完善的通才计算机代理商
Wu,Chengcheng Han,Zichen Ding,Zhenmin Weng,Zhoumianze Liu,Shunyu Yao,Tao Yu,Lingpeng Kong。 [ABS],2024.02
Seeclick:利用高级视觉GUI代理的GUI接地
Kanzhi Cheng,Qiushi Sun,Yougang Chu,Fangzhi Xu,Yantao Li,Jianbing Zhang,Zhiyong Wu。 [ABS],2024.01
WebGPT:通过人类反馈的浏览器协助提问
Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, John Schulman. [ABS],2021.12
工具形式:语言模型可以教会自己使用工具
Timo Schick,Jane Dwivedi-Yu,RobertoDessì,Roberta Realeanu,Maria Lomeli,Luke Zettlemoyer,Nicola Cancedda,Thomas Scialom。 [ABS],2023.2
MM反应:提示CHATGPT进行多模式推理和行动
Zhengyuan Yang,Linjie Li,Jianfeng Wang,Kevin Lin,Ehsan Azarnasab,Faisal Ahmed,Zicheng Liu,Ce Liu,Michael Zeng,Lijuan Wang。 [ABS],2023.3
Hugginggpt:与Chatgpt及其朋友在拥抱脸上解决AI任务
Yongliang Shen,Kaitao Song,Xu Tan,Dongsheng Li,Weiming Lu,Yueting Zhuang。 [ABS],2023.3
Visual Chatgpt:使用视觉基础模型说话,绘画和编辑
Chenfei Wu,Shengming Yin,Weizhen Qi,Xiaodong Wang,Zecheng Tang,Nan Duan。 [ABS],2023.3
艺术:大型语言模型的自动多步推理和工具使用
Bhargavi Paranjape,Scott Lundberg,Sameer Singh,Hannaneh Hajishirzi,Luke Zettlemoyer,Marco Tulio Ribeiro。 [ABS],2023.3
taskmatrix.ai:通过将基础模型与数百万API连接起来完成任务
Yaobo Liang,Chenfei Wu,Ting Song,Wenshan Wu,Yan Xia,Yu Liu,Yang Ou,Shuai Lu,Lei JI,Shaoguang Mao,Yun Wang,Linjun Shou,Ming Shou,Ming Gong,Nan Duan。 [ABS],2023.3
变色龙:大型语言模型的插件构图推理
Pan Lu,Baolin Peng,Hao Cheng,Michel Galley,Kai-Wei Chang,Ying Nian Wu,Song-Chun Zhu,Jianfeng Gao。 [ABS],2023.4
Chemcrow:使用化学工具增强大型模型
Andres M Bran,Sam Cox,Andrew D White,Philippe Schwaller。 [ABS],2023.4
TALM:工具增强语言模型
亚伦·帕里西(Aaron Parisi),赵赵(Yao Zhao),诺亚·菲德尔(Noah Fiedel)。 [ABS],2022.5
评论家:大型语言模型可以通过工具相互作用的批评自我纠正
Zhibin Gou,Zhihong Shao,Yeyun Gong,Yelong Shen,Yujiu Yang,Minlie Huang,Nan Duan,Weizhu Chen。 [ABS] [代码],2023.5
通过执行反馈使语言模型更好
Shuofei Qiao,Honghao Gui,Huajun Chen,Ningyu Zhang。 [ABS],2023.5
CHATCOT:基于聊天的大语言模型的工具增强链的推理
Zhipeng Chen,Kun Zhou,Beichen Zhang,Zheng Gong,Wayne Xin Zhao,Ji-Rong Wen。 [ABS],2023.5
大猩猩:与大型API相连的大语言模型
Shishir G. Patil,Tianjun Zhang,Xin Wang,Joseph E. Gonzalez。 [ABS],2023.5
TOOLLLM:促进大型语言模型掌握16000多个现实世界中的API
Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, Maosong Sun. [ABS],2023.7
装备:具有可推广和高效的工具分辨率的增强语言模型
lu lu,yu,丹尼尔·卡沙比(Daniel Khashabi)。 [ABS],2023.7
Gentopia:一个工具增强LLMS的协作平台
Binfeng Xu,Xukun Liu,Hua Shen,Zeyu Han,Yuhan Li,Murong Yue,Zhiyuan Peng,Yuchen Liu,Ziyu Yao,Dongkuan Xu。 [ABS],2023.8
用LM含有LM的沙盒确定LM剂的风险
Yangjun Ruan,Honghua Dong,Andrew Wang,Silviu Pitis,Yongchao Zhou,Jimmy BA,Yann Dubois,Chris J. Maddison,Tatsunori Hashimoto。 [ABS],2023.9
利用预先培训的大型语言模型来构建和利用世界模型进行基于模型的任务计划
Lin Guan,Karthik Valmeekam,Sarath Sreedharan,Subbarao Kambhampati [ABS],2023.5
数据 - 操作:桥接数十亿个数据和人类具有自主工作流程
Wenqi Zhang,Yongliang Shen,Weiming Lu,Yueting Zhuang [abs],2023.6
Clova:使用工具使用和更新的闭环视觉助手
Zhi Gao,Yuntao du,Xintong Zhang,Xiaojian MA,Wenjuan Han,Song-Chun Zhu,Qing Li [abs],2023.12
gitagent:用工具扩展促进使用github的自主剂
Bohan Lyu,Xin Cong,Heyang Yu,Pan Yang,Yujia Qin,Yining Ye,Yaxi Lu,Zhong Zhang,Yukun Yan,Yukun Yan,Yankai Lin,Yankai Lin,Zhiyuan Liu,Maosong Sun。 [ABS],2023.12
EasyTool:使用简洁的工具指令增强基于LLM的代理
Siyu Yuan,Kaitao Song,Jiangjie Chen,Xu Tan,Yongliang Shen,Kan Ren,Dongsheng Li,Deqing Yang。 [ABS],2024.1
符号-llm:迈向大型语言模型的基础符号界面
Fangzhi Xu,Zhiyong Wu,Qiushi Sun,Siyu Ren,Fei Yuan,Shuai Yuan,Qika Lin,Yu Qiao,Jun Liu。 [ABS],2023.11
郁金香代理 - 使基于LLM的代理使用大型工具库解决任务
Felix Ocker,Daniel Tanneberg,Julian Eggert,Michael Gienger。 [ABS],2024.07
OneGen:LLM的有效的一通统一生成和检索
Jintian Zhang,Cheng Peng,Mengshu Sun,Xiang Chen,Lei Liang,Zhiqiang Zhang,Jun Zhou,Huajun Chen,Ningyu Zhang。 [ABS],2024.09
语言模型级联
David Dohan,Winnie Xu,Aitor Lewkowycz,Jacob Austin,David Bieber,Raphael Gontijo Lopes,Yuhuai Wu,Henryk Michalewski,Rif A. Saurous,Jascha Sohl-Dickstein,Kevin Murphy,Kevin Murphy,Charles Sutton。 [ABS],2022.7
与语言模型合作用于具体推理
Ishita Dasgupta,Christine Kaeser-Chen,Kenneth Marino,Arun Ahuja,Sheila Babayan,Felix Hill,Rob Fergus。 [ABS],2023.2
骆驼:大规模语言模型社会的“思维”探索的交流代理商
Guohao Li,Hasan Abed Al Kader Hammoud,Hani Itani,Dmitrii Khizbullin,Bernard Ghanem。 [ABS],2023.3
多方聊天:与人类和模型的小组设置中的对话代理
Jimmy Wei,Kurt Shuster,Arthur Szlam,Jason Weston,Jack Urbanek,Mojtaba Komeili。 [ABS],2023.4
Chatllm网络:更多的大脑,更多的智能
Rui Hao,Linmei Hu,Weijian Qi,Qingliu Wu,Yirui Zhang,Liqiang Nie。 [ABS],2023.4
通过chatgpt生成的自我合作代码
Yihong Dong,Xue Jiang,Zhi Jin,Ge Li。 [ABS],2023.4
大型语言模型的新兴自主科学研究能力
Daniil A. Boiko,Robert Macknight,Gabe Gomes。 [ABS],2023.4
CHATGPT/GPT-4用于知识图构建和推理:最近的功能和未来机会
Yuqi Zhu,Xiaohan Wang,Jing Chen,Shuofei Qiao,Yixin OU,Yunzhi Yao,Shumin Deng,Huajun Chen,Ningyu Zhang。 [ABS],2023.5
大型语言模型作为工具制造商
Tianle Cai,Xuezhi Wang,Tengyu MA,Xinyun Chen,Denny Zhou 。 [ABS],2023.5
从行动和指示中推断出传达代理的目标
Lance Ying,Tan Zhi-Xuan,Vikash Mansinghka,Joshua B. Tenenbaum。 [ABS],2023.6
无线多代理生成AI:从连接的智能到集体智能
Hang Zou,Qiyang Zhao,Lina Bariah,Mehdi Bennis,Merououane Debbah。 [ABS],2023.7
Roco:与大语言模型的辩证法多机器人合作
Zhao Mandi,Shreeya Jain,Shuran Song。 [ABS],2023.7
在大语模型中释放认知协同作用:通过多人自行车解决任务的代理
Zhenhailong Wang,Shaoguang Mao,Wenshan Wu,Tao Ge,Furu Wei,Heng JI。 [ABS],2023.7
软件开发的交流代理
Chen Qian,Xin Cong,Cheng Yang,Weize Chen,Yusheng Su,Juyuan Xu,Zhiyuan Liu,Maosong Sun。 [ABS],2023.7
到Infinity及以后:多代理模拟中的Show-1和Showrunner代理
Philipp Maas,Frank Carey,Chris Wheeler,Edward Saatchi,Pete Billington,Jessica Yaffa Shamash。 [ABS],2023.7
METAGPT:用于多代理协作框架的元编程
Sirui Hong,Xiawu Zheng,Jonathan Chen,Yuheng Cheng,Ceyao Zhang,Zili Wang,Steven Ka Shing Yau,Zijuan Lin,Liyang Zhou,Chenyu Ran,Lingfeng ran,Lingfeng Xiao,Chenglin Wu。 [ABS],2023.8
通过自我播放和文本中的自我反馈学习来改善语言模型谈判
Yao Fu,Hao Peng,Tushar Khot,Mirella Lapata。 [ABS],2023.5
多代理协作:利用智能LLM代理的力量
Yashar Talebirad,Amirhossein Nadiri。 [ABS],2023.6
RESTGPT:通过RESTFUL API连接大型语言模型与现实世界应用程序
Yifan Song,Weimin Xiong,Dawei Zhu,Cheng Li,Ke Wang,Ye Tian,Sujian Li 。 [ABS],2023.6
用大语言模型模块化建造合作的体现代理
Hongxin Zhang,Weihua du,Jiaming Shan,Qinhong Zhou,Yilun DU,Joshua B. Tenenbaum,Tianmin Shu,Chuang Gan。 [ABS],2023.7
互动:探索Chatgpt作为合作社的潜力
Po-Lin Chen,Cheng-Shang Chang。 [ABS],2023.8
Autogen:通过多代理对话框架启用下一代LLM应用程序
青牛,加根·班萨尔,杰尤张,Yiran Wu,Shaokun Zhang,Erkang Zhu,Beibin Li,Li Jiang,Xiaoyun Zhang,Chi Wang。 [ABS],2023.8
通过及时工程探索大语模型和基于代理的建模的交集
爱德华·詹普朗(Edward Junprung)。 [ABS],2023.8
神经摊销的推断,用于嵌套多代理推理
Kunal Jha,Tuan Anh Le,Chuanyang Jin,Yen-Ling Kuo,Joshua B. Tenenbaum,Tianmin Shu。 [ABS],2023.8
GPT-in-the-limop:多型系统的自适应决策
Nathalia Nascimento,Paulo Alencar,Donald Cowan。 [ABS],2023.8
主动:建立主动合作AI,具有大语言模型
Ceyao Zhang,Kaijie Yang,Siyi Hu,Zihao Wang,Guanghe Li,Yihang Sun,Cheng Zhang,Zhaowei Zhang,Anji Liu,Song-Chun Zhu,Xiaojun Zhu,Xiaojun Zhun,Jiage Zhang Zhang,Junge Zhang,Feng Yin,Yitao Liang,Yaodong,Yaodong,Yaodong。 [ABS],2023.8
Mindagent:新兴游戏互动
Ran Gong,Qiuyuan Huang,Xiaojian MA,Hoi VO,Zane Durante Yusuke Noda,Zilong Zheng,Song-Chun Zhu Zhu demetri Terzopoulos,li fei fei,li fei fei,jianfeng gao。 [ABS],2023.9
探索LLM代理商的协作机制:一种社会心理学观点
Jintian Zhang,Xin Xu,Shumin Deng。 [ABS],2023.10
Lumos:具有统一数据,模块化设计和开源LLM的学习代理商
Da Yin,Faeze Brahman,Abhilasha Ravichander,Khyathi Chandu,Kai-Wei Chang,Yejin Choi,Bill Yuchen Lin。 [ABS],2023.11
自动手术:自动代理通过自我计划从头开始学习
Shuofei Qiao,Ningyu Zhang,Runnan Fang,Yujie Luo,Wangchunshu Zhou,Yuchen Eleanor Jiang,Chengfei LV,Huajun Chen。 [ABS],2024.01
COREX:通过多模型协作来推动复杂推理的界限
Qiushi Sun,Zhangyue Yin,Xiang Li,Zhiyong Wu,Xipeng Qiu,Lingpeng Kong。 [ABS],2023.10
COMM:协作多代理,多样性路径,促使复杂的问题解决
Pei Chen,Boran Han,Shuai Zhang。 [ABS],2024.4
进入未知的未知数:通过参与语言模型代理对话的人类学习
Yucheng Jiang,Yijia Shao,Dekun MA,Sina J. Semnani,Monica S. Lam。 [ABS],2024.8
通过多代理辩论在大型语言模型中鼓励不同的思维
田liang,Zhiwei He,Wenxiang Jiao,Xing Wang,Yan Wang,Rui Wang,Yujiu Yang,Zhaopeng Tu,Shuming Shi。 [ABS],2023.5
通过多种辩论改善语言模型中的事实和推理
Yilun Du,Shuang Li,Antonio Torralba,Joshua B. Tenenbaum,Igor Mordatch。 [ABS],2023.5
通过自我播放和文本中的自我反馈学习来改善语言模型谈判
Yao Fu,Hao Peng,Tushar Khot,Mirella Lapata。 [ABS],2023.5
Chateval:通过多代理辩论迈向更好的基于LLM的评估者
Chi-Min Chan,Weize Chen,Yusheng Su,Jianxuan Yu,Wei Xue,Shanghang Zhang,Jie Fu,Zhiyuan liu。 [ABS],2023.8
LLMS对逻辑谬论的敏感程度如何?
Amirreza Payandeh,Dan Pluth,Jordan Hosier,Xuesu Xiao,Vijay K. Gurbani。 [ABS],2023.8
用LM含有LM的沙盒确定LM剂的风险
Yangjun Ruan, Honghua Dong, Andrew Wang, Silviu Pitis, Yongchao Zhou, Jimmy Ba, Yann Dubois, Chris J. Maddison, Tatsunori Hashimoto. [abs], 2023.9
Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View
Jintian Zhang, Xin Xu, Shumin Deng. [abs], 2023.10
生成代理:人类行为的互动模拟
Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, Michael S. Bernstein. [abs], 2023.4
Training Socially Aligned Language Models in Simulated Human Society.
Ruibo Liu, Ruixin Yang, Chenyan Jia, Ge Zhang, Denny Zhou, Andrew M. Dai, Diyi Yang, Soroush Vosoughi. [abs], 2023.5
The Role of Summarization in Generative Agents: A Preliminary Perspective
Xiachong Feng, Xiaocheng Feng, Bing Qin. [abs], 2023.5
Epidemic Modeling with Generative Agents.
Ross Williams, Niyousha Hosseinichimeh, Aritra Majumdar, Navid Ghaffarzadegan. [abs], 2023.7
S^3: Social-network Simulation System with Large Language Model-Empowered Agents
Chen Gao, Xiaochong Lan, Zhihong Lu, Jinzhu Mao, Jinghua Piao, Huandong Wang, Depeng Jin, Yong Li. [abs],2023.7
AgentSims: An Open-Source Sandbox for Large Language Model Evaluation
Jiaju Lin, Haoran Zhao, Aochi Zhang, Yiting Wu, Huqiuyue Ping, Qin Chen . [abs], 2023.8
CGMI: Configurable General Multi-Agent Interaction Framework
Shi Jinxin, Zhao Jiabao, Wang Yilei, Wu Xingjiao, Li Jiawen, He Liang. [abs], 2023.8
EduChat: A Large-Scale Language Model-based Chatbot System for Intelligent Education
Yuhao Dan, Zhikai Lei, Yiyang Gu, Yong Li, Jianghao Yin, Jiaju Lin, Linhao Ye, Zhiyan Tie, Yougen Zhou, Yilei Wang, Aimin Zhou, Ze Zhou, Qin Chen, Jie Zhou, Liang He, Xipeng Qiu. [abs], 2023.8
SuperAgent: A Customer Service Chatbot for E-commerce Websites
Lei Cui, Shaohan Huang, Furu Wei, Chuanqi Tan, Chaoqun Duan, Ming Zhou. [paper], 2017
WebArena: A Realistic Web Environment for Building Autonomous Agents
Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan Bisk, Daniel Fried, Uri Alon, Graham Neubig. [abs], 2023.7
LLM As DBA
Xuanhe Zhou, Guoliang Li, Zhiyuan Liu. [abs], 2023.8
RoboAgent: Generalization and Efficiency in Robot Manipulation via Semantic Augmentations and Action Chunking
Homanga Bharadhwaj, Jay Vakil, Mohit Sharma, Abhinav Gupta, Shubham Tulsiani, Vikash Kumar. [paper], 2023
Is There Any Social Principle for LLM-Based Agents?
Jitao Bai, Simiao Zhang, Zhonghao Chen. [abs], 2023.8
ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving
Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan, Weizhu Chen. [abs] [code], 2023.9
Agentic Skill Discovery
Xufeng Zhao, Cornelius Weber, Stefan Wermter [abs] [code], 2024.5
协助用大型语言模型从头开始撰写类似Wikipedia的文章
Yijia Shao, Yucheng Jiang, Theodore A. Kanell, Peter Xu, Omar Khattab, Monica S. Lam. [abs], [code], 2024.4
Agents: An Open-source Framework for Autonomous Language Agents
Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jintian Zhang, Jing Chen, Ruipu Wu, Shuai Wang, Shiding Zhu, Jiyu Chen, Wentao Zhang, Ningyu Zhang, Huajun Chen, Peng Cui, Mrinmaya Sachan. [abs], 2023.9
Dynamic LLM-Agent Network: An LLM-agent Collaboration Framework with Agent Team Optimization
Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, Diyi Yang. [abs], 2023.10
OpenAgents: An Open Platform for Language Agents in the Wild
Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Junning Zhao, Qian Liu, Che Liu, Leo Z. Liu, Yiheng Xu, Hongjin Su, Dongchan Shin, Caiming Xiong, Tao Yu. [abs], 2023.10
AutoAct: Automatic Agent Learning from Scratch via Self-Planning
Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo, Wangchunshu Zhou, Yuchen Eleanor Jiang, Chengfei Lv, Huajun Chen. [abs], 2024.01
An Interactive Agent Foundation Model
Zane Durante, Bidipta Sarkar, Ran Gong, Rohan Taori, Yusuke Noda, Paul Tang, Ehsan Adeli, Shrinidhi Kowshika Lakshmikanth, Kevin Schulman, Arnold Milstein, Demetri Terzopoulos, Ade Famoti, Noboru Kuno, Ashley Llorens, Hoi Vo, Katsu Ikeuchi, Li Fei-Fei, Jianfeng Gao, Naoki Wake, Qiuyuan Huang. [abs], 2024.02
Emergence of Social Norms in Generative Agent Societies: Principles and Architecture
Siyue Ren, Zhiyao Cui, Ruiqi Song, Zhen Wang, Shuyue Hu. [abs], 2024.03
Interactive Evolution: A Neural-Symbolic Self-Training Framework For Large Language Models
Fangzhi Xu, Qiushi Sun, Kanzhi Cheng, Jun Liu, Yu Qiao, Zhiyong Wu. [abs], 2024.06
AgentSquare: Automatic LLM Agent Search in Modular Design Space
Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, Yong Li [abs], 2024.10
Enhancing Trust in LLM-Based AI Automation Agents: New Considerations and Future Challenges
Sivan Schwartz, Avi Yaeli, Segev Shlomov. [abs], 2023.8
Mind2Web: Towards a Generalist Agent for the Web
Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, Yu Su. [abs], 2023.6
The Tong Test: Evaluating Artificial General Intelligence Through Dynamic Embodied Physical and Social Interactions
Yujia Peng , Jiaheng Han, Zhenliang Zhang , Lifeng Fan , Tengyu Liu, Siyuan Qi, Xue Feng, Yuxi Ma, Yizhou Wang, Song-Chun Zhu. [abs], 2023.7
AgentBench: Evaluating LLMs as Agents
Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, Jie Tang . [abs], 2023.8
BOLAA: Benchmarking and Orchestrating LLM-augmented Autonomous Agents.
Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao Feng, Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, Ran Xu, Phil Mui, Huan Wang, Caiming Xiong, Silvio Savarese. [abs], 2023.8
Identifying the Risks of LM Agents with an LM-Emulated Sandbox
Yangjun Ruan, Honghua Dong, Andrew Wang, Silviu Pitis, Yongchao Zhou, Jimmy Ba, Yann Dubois, Chris J. Maddison, Tatsunori Hashimoto. [abs], 2023.9
T-Eval: Evaluating the Tool Utilization Capability of Large Language Models Step by Step
Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo, Songyang Zhang, Dahua Lin, Kai Chen, Feng Zhao. [abs], 2023.12
TravelPlanner: A Benchmark for Real-World Planning with Language Agents
Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, Yu Su. [abs], 2024.02
AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents
Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng Kong, Junxian He. [abs], 2024.01
OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments
Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio Savarese, Caiming Xiong, Victor Zhong, Tao Yu. [abs], 2024.04
TimeChara: Evaluating Point-in-Time Character Hallucination of Role-Playing Large Language Models
Jaewoo Ahn, Taehyun Lee, Junyoung Lim, Jin-Hwa Kim, Sangdoo Yun, Hwaran Lee, Gunhee Kim. [abs], 2024.05
AppWorld: A Controllable World of Apps and People for Benchmarking Interactive Coding Agents
Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank Gupta, Ashish Sabharwal, Niranjan Balasubramanian. [abs], 2024.07
Benchmarking Agentic Workflow Generation
Shuofei Qiao, Runnan Fang, Zhisong Qiu, Xiaobin Wang, Ningyu Zhang, Yong Jiang, Pengjun Xie, Fei Huang, Huajun Chen . [abs], 2024.10
| 类型 | 工具 |
|---|---|
| Agent with tool | AutoGPT、LangChain、Transformer Agents、WorkGPT、AutoChain 、Langroid、 WebArena、GPT Researcher、BMTools、ToolBench 、AgentGPT、xlang |
| 多代理 | CAMEL、GPTeam、AgentVerse、MetaGPT、Langroid、SocraticAI、AutoGen、Agents |
| 其他的 | AutoAgents 、GPT Engineer |
Auto-GPT. An experimental open-source attempt to make GPT-4 fully autonomous.
LangChain. Building applications with LLMs through composability.
骆驼。 Communicative Agents for “Mind” Exploration of Large Scale Language Model Society.
GPTeam. GPTeam: An open-source multi-agent simulation.
Transformer Agents. In short, it provides a natural language API on top of transformers: we define a set of curated tools and design an agent to interpret natural language and to use these tools.
AgentVerse . A Framework for Multi-LLM Environment Simulation.
AutoAgents. Complex question answering in LLMs with enhanced reasoning and information-seeking capabilities.
GPT Engineer . Specify what you want it to build, the AI asks for clarification, and then builds it.
MetaGPT. The Multi-Agent Framework: Given one line Requirement, return PRD, Design, Tasks, Repo
WorkGPT. A GPT agent framework for invoking APIs.
AutoChain. Build lightweight, extensible, and testable LLM Agents.
Langroid. Harness LLMs with Multi-Agent Programming.
SocraticAI. Problem solving by engaging multiple AI agents in conversation with each other and the user.
WebArena. A Realistic Web Environment for Building Autonomous Agents.
GPT Researcher. GPT based autonomous agent that does online comprehensive research on any given topic.
BMTools. Tool Learning for Big Models, Open-Source Solutions of ChatGPT-Plugins
ToolBench. An open platform for training, serving, and evaluating large language model for tool learning.
AgentGPT. Assemble, configure, and deploy autonomous AI Agents in your browser.
xlang. An open-source framework for building and evaluating language model agents via executable language grounding
Agently. A fast way to build LLM Agent based Application ? A light weight framework helps developers to create amazing LLM based applications.
Lagent. A lightweight framework for building LLM-based agents.
ToolEmu An LLM-based emulation framework for testing and identifying the risks of LLM-based agents
storm A knowledge agent that researches a topic and generates a full-length report with citations.
" Join us in improving this repository! If you know of any important works we've missed, please contribute. Your efforts are highly valued! "