semantic kernel semanticsearch
1.0.0
시맨틱 커널을 사용한 질문 및 답변 흐름의 샘플 구현.
이것은 SQLITE를 사용하여 임베딩을 저장하고 (주의 : SQLITE는 벡터 최적화되지 않습니다!) OpenAI는 데이터베이스에있는 텍스트를 기반으로 질문에 답변합니다. 데이터베이스는 구성의 URL에 따라 채워집니다.
appsettings.json 또는 사용자 비밀에 복사하여 붙여 넣습니다 ( OpenAI:ApiKey )appsettings.json (Entry Urls )에서 입력 데이터를 조정합니다.dotnet run Enter a question or press enter to quit: What is sk?
?: Semantic Kernel (SK) is a lightweight SDK that lets you easily mix conventional programming languages with the latest in Large Language Model (LLM) AI "prompts" with templating, chaining, and planning capabilities out-of-the-box.
Enter a question or press enter to quit: What systems cann SK connect to?
?: SK can connect to external APIs, MS Graph Connector Kit, Bing search query, OpenXML streams, and SQLite.
Enter a question or press enter to quit: Shoe me an example of creating a kernel
?: using Microsoft.SemanticKernel;
var myKernel = Kernel.Builder.Build();
Enter a question or press enter to quit: Was bedeutet SK?
?: SK steht für Semantic Kernel.
Enter a question or press enter to quit: ¿Qué significa SK?
?: SK significa Kernel Semántico.
appsettings.json 에서 구성). Use the following pieces of context to answer the question at the end. If you don't know the answer, don't try to make up an answer and answer with 'I don't know'. Answer in the langauge that used for the question.
{{$context}}
Question: {{$input}}
Answer: