
Daftar isi
uniqueMenemukan dokumentasi Golang bukanlah masalah besar. Ada banyak sumber daya yang baik, cukup pilih satu & mulai perjalanan belajar Anda. Saya terutama mengikuti belajar pergi - Miek Gieben.
Catatan : Setiap contoh dalam dokumentasi ini disimpan dalam direktori yang dinamai oleh bagian. Saya berasumsi bahwa setiap perintah di Bagian X akan dieksekusi dalam Direktori Contoh/X , jadi saya tidak menulis file lengkap untuk pergi file skrip.
/* hello_world.go */
package main
import "fmt" // Implements formatted I/O
/* Say Hello-World */
func main () {
fmt . Printf ( "Hello World" )
}go build helloworld.go # Return an executable called helloworld./helloworldgo run helloworld.go /* When you declare a variable it is assigned the "natural" null value for the type */
var a int // a has a value of 0
var s string // s is assigned the zero string, which is ""
a = 26
s = "hello"
/* Declaring & assigning in Go is a two step process, but they may be combined */
a := 26 // In this case the variable type is deduced from the value. A value of 26 indicates an int for example.
b := "hello" // The type should be string
/* Multiple var declarations may also be grouped (import & const also allow this) */
var (
a int
b string
)
/* Multiple variables of the same type ca also be declared on a single line */
var a , b int
a , b := 26 , 9
/* A special name for a variable is _, any value assigned to it is discarded. */
_ , b := 26 , 9 Boolean : bool
Numerik :
int - ia memiliki panjang yang sesuai untuk mesin Anda (mesin 32 -bit - 32 bit, mesin 64 -bit - 64 bit)int8 , int16 , int32 , int64 & byte (alias untuk uint8 ), uint8 , uint16 , uint32 , uint64 .float32 , float64 , /* numerical_types.go */
package main
func main () {
var a int
var b int32
b = a + a // Give an error: cannot use a + a (type int) as type int32 in assignment.
b = b + 5
} Konstanta: Konstanta dibuat pada waktu kompilasi, & hanya bisa menjadi angka, string, atau boolean. Anda dapat menggunakan iota untuk menyebutkan nilai.
const (
a = iota // First use of iota will yield 0. Whenever iota is used again on a new line its value is incremented with 1, so b has a vaue of 1.
b
)String :
string di GO. Perhatikan itu! Dalam Python (bahasa pemrograman favorit saya), saya dapat menggunakan keduanya untuk penugasan string. s1 := "Hello"
c := [] rune ( s ) // Convert s1 to an array of runes
c [ 0 ] := 'M'
s2 := string ( c ) // Create a new string s2 with the alteration
fmt . Printf ( "%s n " , s2 ) Rune : Rune adalah alias untuk int32 , (gunakan saat Anda mengulangi karakter dalam string).
Bilangan kompleks : complex128 (64 bit bagian nyata & imajiner) atau complex32 .
Kesalahan : GO memiliki tipe builtin khusus untuk kesalahan, yang disebut error.var e .
GO 1.18 membawa dukungan untuk jenis generik . Implementasi generik yang disediakan oleh GO 1.18 mengikuti proposal parameter tipe dan memungkinkan pengembang untuk menambahkan parameter tipe opsional untuk mengetik dan fungsi deklarasi. Tutorial Generics Golang Checkout.
package main
import "fmt"
type Number interface {
int64 | float64
}
func main () {
// Initialize a map for the integer values
ints := map [ string ] int64 {
"first" : 34 ,
"second" : 12 ,
}
// Initialize a map for the float values
floats := map [ string ] float64 {
"first" : 35.98 ,
"second" : 26.99 ,
}
fmt . Printf ( "Non-Generic Sums: %v and %v n " ,
SumInts ( ints ),
SumFloats ( floats ))
fmt . Printf ( "Generic Sums: %v and %v n " ,
SumIntsOrFloats [ string , int64 ]( ints ),
SumIntsOrFloats [ string , float64 ]( floats ))
fmt . Printf ( "Generic Sums, type parameters inferred: %v and %v n " ,
SumIntsOrFloats ( ints ),
SumIntsOrFloats ( floats ))
fmt . Printf ( "Generic Sums with Constraint: %v and %v n " ,
SumNumbers ( ints ),
SumNumbers ( floats ))
}
// SumInts adds together the values of m.
func SumInts ( m map [ string ] int64 ) int64 {
var s int64
for _ , v := range m {
s += v
}
return s
}
// SumFloats adds together the values of m.
func SumFloats ( m map [ string ] float64 ) float64 {
var s float64
for _ , v := range m {
s += v
}
return s
}
// SumIntsOrFloats sums the values of map m. It supports both floats and integers
// as map values.
func SumIntsOrFloats [ K comparable , V int64 | float64 ]( m map [ K ] V ) V {
var s V
for _ , v := range m {
s += v
}
return s
}
// SumNumbers sums the values of map m. Its supports both integers
// and floats as map values.
func SumNumbers [ K comparable , V Number ]( m map [ K ] V ) V {
var s V
for _ , v := range m {
s += v
}
return s
} Precedence Operator(s)
Highest * / % << >> & &^
`+ -
== != < <= > >=
<-
&&
Lowest ||
& bitwise dan, | bitwise atau, ^ bitwise xor, &^ bit jelas masing -masing. break default func interface select
case defer go map struct
chan else goto package switch
const fallthrough if range type
continue for import return var
var , const , package , import digunakan di bagian sebelumnya.func digunakan untuk mendeklarasikan fungsi & metode.return digunakan untuk kembali dari fungsi.go digunakan untuk konkurensi.select digunakan untuk memilih dari berbagai jenis komunikasi.interface .struct digunakan untuk tipe data abstrak.type . if x > 0 {
return y
} esle {
return x
}
if err := MagicFunction (); err != nil {
return err
}
// do somethinggoto Anda melompat ke label yang harus ditentukan dalam fungsi saat ini. /* goto_test */
/* Create a loop */
func gototestfunc () {
i := 0
Here:
fmt . Println ()
i ++
goto Here
}for loop memiliki tiga bentuk, hanya satu yang memiliki titik koma: for init ; condition ; post { } // aloop using the syntax borrowed from C
for condition { } // a while loop
for { } // a endless loop
sum := 0
for i := 0 ; i < 10 ; i ++ {
sum = sum + i
} for i := 0 ; i < 10 ; i ++ {
if i > 5 {
break
}
fmt . Println ( i )
}
/* With loops within loop you can specify a label after `break` to identify which loop to stop */
J: for j := 0 ; j < 5 ; j ++ {
for i := 0 ; i < 10 ; i ++ {
if i > 5 {
break J
}
fmt . Println ( i )
}
}Jangkauan :
range dapat digunakan untuk loop. Ini dapat mengulang irisan, array, string, peta & saluran.range adalah iterator yang, ketika dipanggil, mengembalikan pasangan nilai kunci berikutnya dari "hal" yang diulang. list := [] string { "a" , "b" , "c" , "d" , "e" , "f" }
for k , v := range list {
// do some fancy thing with k & v
}Mengalihkan :
switch tidak memiliki ekspresi, ia beralih secara true .if-else-if-else sebagai switch . /* Convert hexadecimal character to an int value */
switch { // switch without condition = switch true
case '0' <= c && c <= '9' :
return c - '0'
case 'a' <= c && c <= 'f' :
return c - 'a' + 10
case 'A' <= c && c <= 'F' :
return c - 'A' + 10
}
return 0
/* Automatic fall through */
switch i {
case 0 : fallthrough
case 1 :
f ()
default :
g ()
} close new panic complex
delete make recover real
len append print imag
cap copy println
len digunakan untuk mengembalikan panjang tiang, peta, irisan & array.copy adalah untuk menyalin irisan. Dan append untuk menggabungkan irisan.Singkat: Daftar -> Array, Irisan. Dikt -> Peta
Array :
[n]<type> . var arr [ 10 ] int // The size is part of the type, fixed size
arr [ 0 ] = 42
arr [ 1 ] = 13
fmt . Printf ( "The first element is %s n " , arr [ 0 ])
// Initialize an array to something other than zero, using composite literal
a := [ 3 ] int { 1 , 2 , 3 }
a := [ ... ] int { 1 , 2 , 3 }Irisan :
// Init array primes
primes := [ 6 ] int { 2 , 3 , 5 , 7 , 11 , 13 }
// Init slice s
var s [] int = primes [ 1 : 4 ]
fmt . Println ( s ) // Return [3, 5, 7]
/* slice_length_capacity.go */
package main
import "fmt"
func main () {
s := [] int { 2 , 3 , 5 , 7 , 11 , 13 }
printSlice ( s )
// Slice the slice to give it zero length.
s = s [: 0 ]
printSlice ( s )
// Extend its length.
s = s [: 4 ]
printSlice ( s )
// Drop its first two values.
s = s [ 2 :]
printSlice ( s )
}
func printSlice ( s [] int ) {
fmt . Printf ( "len=%d cap=%d %v n " , len ( s ), cap ( s ), s )
} s := make ([] byte , 5 ) len adalah jumlah elemen yang dirujuk oleh irisan.
cap adalah jumlah elemen dalam array yang mendasarinya (dimulai dari elemen yang dirujuk oleh penunjuk irisan).
s = s [ 2 : 4 ]Mengiris tidak menyalin data slice. Ini menciptakan irisan baru yang menunjuk ke array asli. Ini membuat operasi irisan seefisien memanipulasi indikasi array. Oleh karena itu, memodifikasi elemen (bukan irisan itu sendiri) dari slice ulang memodifikasi elemen dari irisan asli:
d := [] byte { 'r' , 'o' , 'a' , 'd' }
e := d [ 2 :]
// e = []byte{'a', 'd'}
e [ 1 ] = 'm'
// e = []byte{'a', 'm'}
// d = []byte{'r', 'o', 'a', 'm'}s ke panjang yang lebih pendek dari kapasitasnya. Kita dapat tumbuh dengan kapasitasnya dengan mengirisnya lagi. s = s [: cap ( s )]Sepotong tidak dapat tumbuh di luar kapasitasnya.
// Another example
var array [ m ] int
slice := array [: n ]
// len(slice) == n
// cap(slice) == m
// len(array) == cap(array) == mappend & copy . s0 := [] int { 0 , 0 }
s1 := append ( s0 , 2 ) // same type as s0 - int.
// If the original slice isn't big enough to fit the added values,
// append will allocate a new slice that is big enough. So the slice
// returned by append may refer to a different underlaying array than
// the original slices does.
s2 := append ( s1 , 3 , 5 , 7 )
s3 := append ( s2 , s0 ... ) // []int{0, 0, 2, 3, 5, 7, 0, 0} - three dots used after s0 is needed make it clear explicit that you're appending another slice, instead of a single value
var a = [ ... ] int { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 }
var s = make ([] int , 6 )
// copy function copies slice elements from source to a destination
// returns the number of elements it copied
n1 := copy ( s , a [ 0 :]) // n1 = 6; s := []int{0, 1, 2, 3, 4, 5}
n2 := copy ( s , s [ 2 :]) // n2 = 4; s := []int{2, 3, 4, 5, 4, 5}Peta :
map Type. monthdays := map [ string ] int {
"Jan" : 31 , "Feb" : 28 , "Mar" : 31 ,
"Apr" : 30 , "May" : 31 , "Jun" : 30 ,
"Jul" : 31 , "Aug" : 31 , "Sep" : 30 ,
"Oct" : 31 , "Nov" : 30 , "Dec" : 31 , // A trailing comma is required
}
value , key := monthdays [ "Jan" ]make saat hanya mendeklarasikan peta. Peta adalah jenis referensi . Peta bukan variabel referensi, nilainya adalah pointer ke struktur runtime.hmap . // A struct is a type. It's also a collection of fields
// Declaration
type Vertex struct {
X , Y float64
}
// Creating
var v = Vertex { 1 , 2 }
var v = Vertex { X : 1 , Y : 2 } // Creates a struct by defining values with keys
var v = [] Vertex {{ 1 , 2 },{ 5 , 2 },{ 5 , 5 }} // Initialize a slice of structs
// Accessing members
v . X = 4
// You can declare methods on structs. The struct you want to declare the
// method on (the receiving type) comes between the the func keyword and
// the method name. The struct is copied on each method call(!)
func ( v Vertex ) Abs () float64 {
return math . Sqrt ( v . X * v . X + v . Y * v . Y )
}
// Call method
v . Abs ()
// For mutating methods, you need to use a pointer (see below) to the Struct
// as the type. With this, the struct value is not copied for the method call.
func ( v * Vertex ) add ( n float64 ) {
v . X += n
v . Y += n
}map[string]intefaces . // ReadWriter implementations must satisfy both Reader and Writer
type ReadWriter interface {
Reader
Writer
}
// Server exposes all the methods that Logger has
type Server struct {
Host string
Port int
* log. Logger
}
// initialize the embedded type the usual way
server := & Server { "localhost" , 80 , log. New ( ... )}
// methods implemented on the embedded struct are passed through
server. Log ( ... ) // calls server.Logger.Log(...)
// the field name of the embedded type is its type name (in this case Logger)
var logger * log. Logger = server. Logger // General Function
type mytype int
func ( p mytype ) funcname ( q , int ) ( r , s int ) { return 0 , 0 }
// p (optional) bind to a specific type called receiver (a function with a receiver is usually called a method)
// q - input parameter
// r,s - return parameters import "fmt"
func main () {
a := func () { // a is defined as an anonymous (nameless) function,
fmt . Println ( "Hello" )
}
a ()
} func printit ( x int ) {
fmt . Println ( "%v n " , x )
}
func callback ( y int , f func ( int )) {
f ( y )
} /* Open a file & perform various writes & reads on it. */
func ReadWrite () bool {
file . Open ( "file" )
// Do your thing
if failureX {
file . Close ()
return false
}
// Repeat a lot of code.
if failureY {
file . Close ()
return false
}
file . Close ()
return true
}
/* Same situation but using defer */
func ReadWrite () bool {
file . Open ( "file" )
defer file . Close () // add file.Close() to the defer list
// Do your thing
if failureX {
return false
}
if failureY {
return false
}
return true
}Defer dieksekusi dalam urutan LIFO . for i := 0 ; i < 5 ; i ++ {
defer fmt . Printf ( "%d " , i ) // 4 3 2 1 0
}defer Anda bahkan dapat mengubah nilai pengembalian, asalkan Anda menggunakan parameter hasil bernama & fungsi literal ( def func(x int) {/*....*/}(5) ). func f () ( ret int )
defer func () { // Initialized with zero
ret ++
}()
return 0 // This will not be the returned value, because of defer. Ths function f will return 1
} func func1 ( arg ... int ) { // the variadic parameter is just a slice.
for _ , n := range arg {
fmt . Printf ( "And the number is: %d n " , n )
}
}pacnic , pelaksanaan F berhenti, setiap fungsi yang ditangguhkan di f dieksekusi secara normal, & kemudian F kembali ke peneleponnya. Kepada penelepon, F kemudian berperilaku seperti panggilan untuk panik. Proses terus naik tumpukan sampai semua fungsi di goroutine saat ini telah kembali, pada titik mana program macet. Panik dapat diprakarsai dengan memohon kepanikan secara langsung. Mereka juga dapat disebabkan oleh kesalahan runtime, seperti akses array di luar batas. /* defer_panic_recover.go */
package main
import "fmt"
func main () {
f ()
fmt . Println ( "Returned normally from f." )
}
func f () {
defer func () {
if r := recover (); r != nil {
fmt . Println ( "Recovered in f" , r )
}
}()
fmt . Println ( "Calling g." )
g ( 0 )
fmt . Println ( "Returned normally from g." )
}
func g ( i int ) {
if i > 3 {
fmt . Println ( "Panicking!" )
panic ( fmt . Sprintf ( "%v" , i ))
}
defer fmt . Println ( "Defer in g" , i )
fmt . Println ( "Printing in g" , i )
g ( i + 1 )
}
/* Result */
// Calling g.
// Printing in g 0
// Printing in g 1
// Printing in g 2
// Printing in g 3
// Panicking!
// Defer in g 3
// Defer in g 2
// Defer in g 1
// Defer in g 0
// Recovered in f 4
// Returned normally from f. package even
func Even ( i int ) bool { // starts with capital -> exported
return i % 2 == 0
}
func odd ( i int ) bool { // start with lower-case -> private
return i % 2 == 1
}mkdir $GOPATH /src/even
cp even.go $GOPATH /src/even
go build
go installimport "even" .import bar "bytes" .src/compress/gzip diimpor sebagai compress/gzip tetapi memiliki nama gzip , bukan compress/gzip .ring.Ring ( container/ring paket), biasanya akan disebut NewRing , tetapi karena Ring adalah satu -satunya jenis yang diekspor oleh paket, karena paket itu disebut ring , itu disebut New . Klien paket melihat itu sebagai ring.New .doc.go terpisah yang hanya memegang komentar paket. /*
The regexp package implements a simple library for
regular expressions.
The syntax of the regular expressions accepted is:
regexp:
concatenation { '|' concatenation }
*/
package regexpmain adalah file entri untuk dieksekusi.main , fungsi init dipanggil demi go saat paket diinisialisasi. Tidak ada argumen apa pun & tidak mengembalikan nilai apa pun. Fungsi init secara implisit dinyatakan oleh Go. Anda dapat memiliki beberapa fungsi init dalam file atau paket. Urutan eksekusi fungsi init dalam file akan sesuai dengan urutan penampilan mereka.null .go run * .go
├── Main package is executed
├── All imported packages are initialized
| ├── All imported packages are initialized (recursive definition)
| ├── All global variables are initialized
| └── init functions are called in lexical file name order
└── Main package is initialized
├── All global variables are initialized
└── init functions are called in lexical file name order Menginstal paket pihak ke -3 tidak lain adalah mengkloning kode jarak jauh ke direktori src/<package> lokal. Sayangnya, GO tidak mendukung versi paket atau menyediakan manajer paket tetapi proposal menunggu di sini .
testing & go test . package main
func Sum ( x int , y int ) int {
return x + y
}
func main () {
Sum ( 5 , 5 )
}
// Testcase
package main
import "testing"
func TestSum ( t * testing. T ) {
total := Sum ( 5 , 5 )
if total != 10 {
t . Errorf ( "Sum was incorrect, got: %d, want: %d." , total , 10 )
}
} package main
import "testing"
func TestSum ( t * testing. T ) {
tables := [] struct {
x int
y int
n int
}{
{ 1 , 1 , 2 },
{ 1 , 2 , 3 },
{ 2 , 2 , 4 },
{ 5 , 2 , 7 },
}
for _ , table := range tables {
total := Sum ( table . x , table . y )
if total != table . n {
t . Errorf ( "Sum of (%d+%d) was incorrect, got: %d, want: %d." , table . x , table . y , total , table . n )
}
}
}Meluncurkan tes:
go testgo test github.com/username/packagePengujian http:
net/http/httptest memfasilitasi otomatisasi pengujian dari server HTTP dan kode klien.httptest.ResponseRecorder dirancang khusus untuk memberikan kemampuan pengujian unit untuk menjalankan metode penangan HTTP dengan memeriksa perubahan keadaan pada HTTP.Responsewriter dalam fungsi yang diuji.httptest menyediakan tipe httptest.Server untuk membuat server secara terprogram untuk menguji permintaan klien dan mengirim kembali tanggapan tiruan ke klien. Cakupan Pernyataan: Alat go test memiliki batas kode bawaan untuk pernyataan.
$ go test -cover
PASS
coverage: 50.0% of statements
ok github.com/alexellis/golangbasics1 0.009s
# Generate a HTML coverage report.
$ go test -cover -coverprofile=c.out
$ go tool cover -html=c.out -o coverage.htmlBenchmark Kode: Tujuan pembandingan adalah untuk mengukur kinerja kode. Alat baris perintah uji GO hadir dengan dukungan untuk generasi otomatis dan pengukuran metrik benchmark. Mirip dengan tes unit, alat uji menggunakan fungsi benchmark untuk menentukan bagian kode yang akan diukur.
Menjalankan tolok ukur
$ > go test -bench=.
PASS
BenchmarkVectorAdd-2 2000000 761 ns/op
BenchmarkVectorSub-2 2000000 788 ns/op
BenchmarkVectorScale-2 5000000 269 ns/op
BenchmarkVectorMag-2 5000000 243 ns/op
BenchmarkVectorUnit-2 3000000 507 ns/op
BenchmarkVectorDotProd-2 3000000 549 ns/op
BenchmarkVectorAngle-2 2000000 659 ns/op
ok github.com/vladimirvivien/learning-go/ch12/vector 14.123sMelewati fungsi tes
> go test -bench=. -run=NONE -v
PASS
BenchmarkVectorAdd-2 2000000 791 ns/op
BenchmarkVectorSub-2 2000000 777 ns/op
Code Testing
[ 314 ]
...
BenchmarkVectorAngle-2 2000000 653 ns/op
ok github.com/vladimirvivien/learning-go/ch12/vector 14.069sTolok ukur komparatif: Untuk membandingkan kinerja algoritma yang berbeda yang menerapkan fungsionalitas serupa. Melatih algoritma menggunakan tolok ukur kinerja akan menunjukkan implementasi mana yang mungkin lebih komputasi dan efisien memori.
Ketergantungan mengisolasi: Faktor kunci yang mendefinisikan unit test adalah isolasi dari dependensi runtime atau kolaborator. Periksa injeksi ketergantungan.
FMT : Paket fmt mengimplementasikan I/O yang diformat dengan fungsi analog dengan c printf & scanf . Kata kerja format berasal dari C tetapi lebih sederhana. Beberapa kata kerja (%-Setes) yang dapat digunakan:
IO : Paket menyediakan antarmuka dasar untuk primitif I/O. Pekerjaan utamanya adalah membungkus implementasi primitif yang ada, seperti yang ada di paket os , menjadi antarmuka publik bersama yang mengabstraksi fungsionalitas, ditambah beberapa primitif terkait lainnya.
Bufio : Paket ini mengimplementasikan I/O buffered. Ini membungkus objek IO.Reader atau IO.Writer, membuat objek lain (pembaca atau penulis) yang juga mengimplementasikan antarmuka tetapi menyediakan buffering & beberapa bantuan untuk I/O tekstual.
Sortir : Paket Sortir menyediakan primitif untuk penyortiran array & koleksi yang ditentukan pengguna.
STRCONV : Paket STRCONV mengimplementasikan konversi ke & dari representasi string tipe data dasar.
OS : Paket OS menyediakan antarmuka platform-independen untuk fungsionalitas sistem operasi. Desainnya seperti Unix.
Sinkronisasi : Sinkronisasi paket memberikan primitif sinkronisasi dasar seperti kunci eksklusi timbal balik.
Bendera : Paket Bendera mengimplementasikan penguraian bendera baris perintah.
Pengkodean/JSON : Paket Encode/JSON mengimplementasikan pengkodean & decoding objek JSON sebagaimana didefinisikan dalam RFC 4627.
HTML/Template : Templat berbasis data untuk menghasilkan output tekstual seperti HTML.
NET/HTTP : Paket NET/HTTP mengimplementasikan penguraian permintaan, balasan, & URL HTTP & menyediakan server HTTP yang dapat diperluas & klien HTTP dasar.
Tidak Aman : Paket yang tidak aman berisi operasi yang melangkah di sekitar jenis keamanan program GO. Biasanya Anda tidak memerlukan paket ini, tetapi perlu disebutkan bahwa program GO yang tidak aman dimungkinkan.
Refleksi : Paket refleksi mengimplementasikan refleksi run-time, yang memungkinkan program untuk memanipulasi objek dengan tipe sewenang-wenang. Penggunaan khasnya adalah untuk mengambil nilai dengan antarmuka tipe statis {} & mengekstrak informasi tipe dinamisnya dengan memanggil tipeof, yang mengembalikan objek dengan tipe tipe antarmuka.
OS/EXEC : Paket OS/EXEC menjalankan perintah eksternal.
GO memiliki petunjuk tetapi bukan pointer arthmetic, jadi mereka bertindak lebih seperti referensi daripada petunjuk yang mungkin Anda ketahui dari C.
var p * int
p ++this .Pointer berguna. Ingatlah bahwa ketika Anda memanggil fungsi di Go, variabelnya adalah nilai-demi-nilai . Jadi, untuk efisiensi & kemungkinan untuk memodifikasi nilai yang dilewati dalam fungsi kami memiliki pointer.
Jenis Pointer ( * Jenis) & Alamat (&) Operator *: Jika suatu variabel dinyatakan var x int , ekspresi &x ("alamat x") menghasilkan pointer ke variabel integer (nilai tipe * int ). Jika nilai ini disebut p , kami mengatakan " p menunjuk ke x ", atau setara " p berisi alamat x ". Variabel yang *p poin p Ekspresi *p menghasilkan nilai variabel itu, int , tetapi karena *p menunjukkan variabel, itu juga dapat muncul di sisi kiri penugasan, dalam hal ini penugasan memperbarui variabel. Referensi di sini
x := 1
p := & x // p, of type *int, points to x
fmt . Println ( * p ) // "1"
* p = 2 // equivalent to x = 2
fmt . Println ( x ) // "2"Semua variabel yang baru dinyatakan diberi nilai nol & pointer tidak berbeda. Pointer yang baru dinyatakan, atau hanya penunjuk yang tidak menunjukkan apa-apa, memiliki nilai nil.
var p * int // declare a pointer
fmt . Printf ( "%v" , p )
var i int
p = & i // Make p point to i
fmt . Printf ( "%v" , p ) // Print somthing like 0x7ff96b81c000a // Go program to illustrate the
// concept of the Pointer to Pointer
package main
import "fmt"
// Main Function
func main () {
// taking a variable
// of integer type
var V int = 100
// taking a pointer
// of integer type
var pt1 * int = & V
// taking pointer to
// pointer to pt1
// storing the address
// of pt1 into pt2
var pt2 * * int = & pt1
fmt . Println ( "The Value of Variable V is = " , V )
fmt . Println ( "Address of variable V is = " , & V )
fmt . Println ( "The Value of pt1 is = " , pt1 )
fmt . Println ( "Address of pt1 is = " , & pt1 )
fmt . Println ( "The value of pt2 is = " , pt2 )
// Dereferencing the
// pointer to pointer
fmt . Println ( "Value at the address of pt2 is or *pt2 = " , * pt2 )
// double pointer will give the value of variable V
fmt . Println ( "*(Value at the address of pt2 is) or **pt2 = " , * * pt2 )
}
// The Value of Variable V is = 100
// Address of variable V is = 0x414020
// The Value of pt1 is = 0x414020
// Address of pt1 is = 0x40c128
// The value of pt2 is = 0x40c128
// Value at the address of pt2 is or *pt2 = 0x414020
// *(Value at the address of pt2 is) or **pt2 = 100Go juga memiliki koleksi sampah.
Untuk mengalokasikan memori GO memiliki 2 primitif, new & make .
Alokat baru ; buat inisialisasi.
Konstruktor & Compiste Literals
// A lot of boiler plate
func NewFile ( fd int , name string ) * File {
if fd < 0 {
return nil
}
f := new ( File )
f . fd = fd
f . name = name
f . dirinfo = nil
f . nepipe = 0
return f
}
// Using a composite literal
func NewFile ( fd int , name string ) * File {
if fd < 0 {
return nil
}
f := File { fd , name , nil . 0 }
return & f // Return the address of a local variable. The storage associated with the variable survives after the function returns.
// return &File{fd, name, nil, 0}
// return &File{fd: fd, name: name}
} Sebagai kasus pembatas, jika literal gabungan tidak mengandung bidang sama sekali, itu menciptakan nilai nol untuk jenis tersebut. Ekspresi new(File) & &File{} setara.
Literal komposit juga dapat dibuat untuk array, irisan, & peta, dengan label lapangan menjadi indeks atau kunci peta yang sesuai.
ar := [ ... ] string { Enone : "no error" , Einval : "invalid argument" }
sl := [] string { Enone : "no error" , Einval : "invalid argument" }
ma := map [ int ] string { Enone : "no error" , Einval : "invalid argument" } /* defining_own_type.go */
package main
import "fmt"
type NameAge struct {
name string // both non exported fiedls
age int
}
func main () {
a := new ( NameAge )
a . name = "Kien"
a . age = 25
fmt . Printf ( "%v n " , a ) // &{Kien, 25}
} struct {
x , y int
A * [] int
F func ()
}Metode:
func doSomething1 ( n1 * NameAge , n2 int ) { /* */ }
// method call
var n * NameAge
n . doSomething1 ( 2 ) func ( n1 * NameAge ) doSomething2 ( n2 int ) { /* */ }Catatan : Jika X adalah set metode yang dapat dialamatkan & & X berisi m, xm () adalah singkatan untuk (& x) .m ().
// A mutex is a data type with two methods, Lock & Unlock
type Mutex struct { /* Mutex fields */ }
func ( m * Mutex ) Lock () { /* Lock impl */ }
func ( m * Mutext ) Unlock { /* Unlock impl */ }
// NewMutex is equal to Mutex, but it does not have any of the methods of Mutex.
type NewMutex Mutex
// PrintableMutex hash inherited the method set from Mutex, contains the methods
// Lock & Unlock bound to its anonymous field Mutex
type PrintableMutex struct { Mutex } FROM b []byte i []int r []rune s string f float32 i int
TO
[]byte . []byte(s)
[]int . []int(s)
[]rune []rune(s)
string string(b) string(i) string(r) .
float32 . float32(i)
int int(f) .
string ke sepotong byte atau rune mystring := "hello this is string"
byteslice := [] byte ( mystring )
runeslice := [] rune ( string ) b := [] byte { 'h' , 'e' , 'l' , 'l' , 'o' } // Composite literal
s := string ( b )
i := [] rune ( 26 , 9 , 1994 )
r := string ( i )Untuk nilai numerik:
uint8(int) .int(float32) . Ini membuang bagian fraksi dari nilai titik mengambang.float32(int)Jenis & konversi yang ditentukan pengguna
type foo struct { int } // Anonymous struct field
type bar foo // bar is an alias for foo
var b bar = bar { 1 } // Declare `b` to be a `bar`
var f foo = b // Assign `b` to `f` --> Cannot use b (type bar) as type foo in assignment
var f foo = foo ( b ) // OK! /* a struct type S with 1 field, 2 methods */
type S struct { i int }
func ( p * S ) Get () int { return p . i }
func ( p * S ) Put ( v int ) { p . i = v }
/* an interface type */
type I interface {
Get () int
Put () int
}
/* S is a valid implementation for interface I */ func f ( p I ) {
fmt . Println ( p . Get ())
p . Put ( 1 )
}
var s S
/* Because S implements I, we can call the
function f passing in a pointer to a value
of type S */
/* The reason we need to take the address of s,
rather than a value of type S, is because
we defined the methods on s to operae on pointers */
f ( & s )Fakta bahwa Anda tidak perlu menyatakan apakah suatu tipe mengimplementasikan antarmuka berarti bahwa GO mengimplementasikan bentuk pengetikan bebek. Ini bukan pengetikan bebek murni, karena bila memungkinkan Complier Go akan secara statis memeriksa apakah tipe tersebut mengimplementasikan permukaan iner. Namun, Go memang memiliki aspek yang murni dinamis, karena Anda dapat mengonversi dari satu antarmuka ke antarmuka lainnya. Dalam kasus umum, konversi itu diperiksa pada waktu lari. Jika konversi tidak valid - jika jenis nilai yang disimpan dalam nilai antarmuka yang ada tidak memenuhi antarmuka yang sedang dikonversi - program akan gagal dengan kesalahan waktu lari.
package main
import "fmt"
type Duck interface {
Quack ()
}
type Donald struct {
}
func ( d Donald ) Quack () {
fmt . Println ( "quack quack!" )
}
type Daisy struct {
}
func ( d Daisy ) Quack () {
fmt . Println ( "-quack -quack" )
}
func sayQuack ( duck Duck ) {
duck . Quack ()
}
type Dog struct {
}
func ( d Dog ) Bark () {
fmt . Println ( "go go" )
}
func main () {
donald := Donald {}
sayQuack ( donald ) // quack
daisy := Daisy {}
sayQuack ( daisy ) // --quack
dog := Dog ()
sayQuack ( dog ) // compile error - cannot use dog (type Dog) as type Duck
} Antarmuka GO memungkinkan Anda menggunakan duck typing seperti yang Anda lakukan dalam bahasa murni dinamis seperti Python tetapi masih memiliki kompiler menangkap kesalahan yang jelas seperti melewati int di mana objek dengan metode Read diharapkan, atau seperti menyebut metode Read dengan jumlah argumen yang salah.
type R struct { i int }
func ( p * R ) Get () int { return p . i }
func ( p * R ) Put ( v int ) { p . i = v }
func f ( p I ) {
switch t := p .( type ) {
case * S :
case * R :
default :
}
} func g ( something interface {}) int {
return something .( I ). Get ()
}.(I) adalah pernyataan tipe yang mengubah something menjadi antarmuka tipe I. Jika kita memiliki tipe, kita dapat memohon fungsi Get() . s = new ( S )
fmt . Println ( g ( s ))Metode adalah fungsi yang memiliki penerima.
Anda dapat menentukan metode pada jenis apa pun (kecuali pada tipe non-lokal, ini termasuk tipe bawaan: tipe int tidak dapat memiliki metode).
Metode pada jenis antarmuka
Dengan konvensi, antarmuka satu metode dinamai dengan nama metode plus sufiks -er: pembaca, penulis, formatter, ...
Penerima Metode Pointer & Non-Pointer.
func ( s * MyStruct ) pointerMethod () {} // method on pointer
func ( s MyStruct ) valueMethod () {} // method on value package main
import "fmt"
type Mutatable struct {
a int
b int
}
func ( m Mutatable ) StayTheSame () {
m . a = 5
m . b = 7
}
func ( m * Mutatable ) Mutate () {
m . a = 5
m . b = 7
}
func main () {
m := & Mutatable { 0 , 0 }
fmt . Println ( m )
m . StayTheSame ()
fmt . Println ( m )
m . Mutate ()
fmt . Println ( m )
}struct besar misalnya, akan jauh lebih murah untuk menggunakan penerima pointer.struct kecil, penerima nilai sangat murah jadi kecuali semantik metode memerlukan pointer, penerima nilai efisien & jelas. package main
import "fmt"
func do ( i interface {}) {
switch v := i .( type ) {
case int :
fmt . Printf ( "Twice %v is %v n " , v , v * 2 )
case string :
fmt . Printf ( "%q is %v bytes long n " , v , len ( v ))
default :
fmt . Printf ( "I don't know about type %T! n " , v )
}
}
func main () {
do ( 21 )
do ( "hello" )
do ( true )
}
// Twice 21 is 42
// "hello" is 5 bytes long
// I don't know about type bool! ready ( "Tea" , 2 ) // Normal function call
go ready ( "Tea" , 2 ) // .. Bum! Here is goroutine
/* X ready example */
package main
import (
"fmt"
"time"
)
func ready ( w string , sec int ) {
time . Sleep ( time . Duration ( sec ) * time . Second )
fmt . Println ( w , "is ready!" )
}
func main () {
go ready ( "Tea" , 2 ) // Tea is ready - After 2 second (3)
go ready ( "Coffee" , 1 ) // Coffee is ready - After 1 second (2)
fmt . Println ( "I'm waiting" ) // Right away (1)
// If did not wait for the goroutines, the program would be terminated
// immediately & any running goroutines would die with it!
time . Sleep ( 5 * time . Second )
} /* Define a channel, we must also define the type of
the values we can send on the channel */
ci := make ( chan int )
cs := make ( chan string )
cf := make ( chan interface {})
ci <- 1 // Send the integer 1 to the channel ci
<- ci // Receive an integer from the channel ci
i := <- ci // Receive from the channel ci & store it in i package main
import (
"fmt"
"time"
)
var c chan int
func ready ( w string , sec int ) {
time . Sleep ( time . Duration ( sec ) * time . Second )
fmt . Println ( w , "is ready!" )
c <- 1
}
func main () {
c = make ( chan int )
go ready ( "Tea" , 2 )
go ready ( "Coffee" , 1 )
fmt . Println ( "I'm waiting" )
<- c // Wait until we receive a value from the channel
<- c
}Saluran Buffered:
Saluran buffer memiliki kapasitas.
Saluran buffer digunakan untuk melakukan komunikasi asinkron.
Saluran buffer tidak memiliki jaminan seperti itu.
Penerima akan diblokir hanya jika tidak ada nilai di saluran yang akan diterima.
Kirim hanya akan diblokir jika tidak ada buffer yang tersedia untuk menempatkan nilai yang dikirim.
Saluran Unbuffered:
Saluran Unbuffered tidak memiliki kapasitas dan karenanya mengharuskan kedua goroutine untuk siap melakukan pertukaran.
Saluran Unbuffered digunakan untuk melakukan komunikasi sinkron antara goroutine. Saluran Unbuffered memberikan jaminan bahwa pertukaran antara 2 goroutine dilakukan pada saat pengiriman dan penerimaan berlangsung.
Sinkronisasi sangat mendasar dalam interaksi antara pengiriman dan penerimaan di saluran.
unbuffered := make ( chan int ) // Unbuffered channel of integer type
buffered := make ( chan int , 10 ) // Buffered channel of integer typeselect . L: for {
select {
case <- c :
i ++
if i > 1 {
break L
}
}
} package main
import "fmt"
func fibonacci ( c , quit chan int ) {
x , y := 0 , 1
for {
select {
case c <- x :
x , y = y , x + y
case <- quit :
fmt . Println ( "quit" )
return
}
}
}
func main () {
c := make ( chan int )
quit := make ( chan int )
go func () {
for i := 0 ; i < 10 ; i ++ {
fmt . Println ( <- c )
}
quit <- 0
}()
fibonacci ( c , quit )
}
// 2
// 3
// 5
// 8
// 13
// 21
// 34
// quit // Default selection
// The default case in a select is run if no other case is ready.
// Use a default case to try a send or receive without blocking:
// select {
// case i := <-c:
// // use i
// default:
// // receiving from c would block
// }
package main
import (
"fmt"
"time"
)
func main () {
tick := time . Tick ( 100 * time . Millisecond )
boom := time . After ( 500 * time . Millisecond )
for {
select {
case <- tick :
fmt . Println ( "tick." )
case <- boom :
fmt . Println ( "BOOM!" )
return
default :
fmt . Println ( " ." )
time . Sleep ( 50 * time . Millisecond )
}
}
}Sementara goroutine kami berjalan bersamaan, mereka tidak berjalan secara paralel! (Sekali lagi, pastikan Anda tahu bahwa konkurensi bukan Parralel!)
Dengan runtime.GOMAXPROCS(n) atau mengatur variabel lingkungan GOMAXPROCS Anda dapat mengatur jumlah goroutine yang dapat berjalan secara paralel.
Dari versi 1.5 & di atas, GOMAXPROCS default ke jumlah core CPU.
ch := make ( chan type , value )
// if value == 0 -> unbuffered
// if value > 0 -> buffer value elements x , ok = <- ch
/ * Where ok is set to True the channel is not closed & we 'v e read something
Otherwise ok is set to False . In that case the channel was closed & the value
received is a zero value of the channel 's type .io.Reader & io.Writer .io.Reader adalah antarmuka penting dalam bahasa itu. Banyak fungsi (jika tidak semua) yang perlu dibaca dari sesuatu mengambil io.Reader sebagai input.io.Writer memiliki metode Write .io.Reader atau io.Writer , seluruh perpustakaan GO standar dapat digunakan pada jenis itu.os.Args .flag memiliki antarmuka yang lebih canggih, & juga menyediakan cara untuk menguraikan bendera.os/exec memiliki fungsi untuk menjalankan perintah eksternal, & adalah cara utama untuk menjalankan perintah dari dalam program GO. import "os/exec"
cmd := exec . Command ( "/bin/ls" , "-l" )
// Just run without doing anything with the returned data
err := cmd . Run ()
// Capturing the standard output
buf , err := cmd . Output () // buf is byte slicenet paket.Dial . Saat Anda Dial ke sistem jarak jauh, fungsi mengembalikan jenis antarmuka Conn , yang dapat digunakan untuk mengirim & menerima informasi. Fungsi Dial dengan rapi mengabstraksi keluarga & transportasi jaringan. conn , e := Dial ( "tcp" , "192.0.32.10:80" )
conn , e := Dial ( "udp" , "192.0.32.10:80" )
conn , e := Dial ( "tcp" , "[2620:0:2d0:200::10]:80" )GO 1.11 termasuk dukungan awal untuk modul, sistem manajemen ketergantungan baru GO yang membuat informasi versi ketergantungan eksplisit dan lebih mudah dikelola.
go.mod di direktori root pohon. Kode sumber modul dapat terletak di luar Gopath. Ada empat arahan: module , require , replace , exclude .require di go.mod , sebagian besar perintah GO seperti 'go build' & 'Go test' akan secara otomatis mencari modul yang tepat & menambahkan versi tertinggi dari ketergantungan langsung baru ke go.mod modul Anda sebagai arahan require . Misalnya, jika impor baru Anda sesuai dengan ketergantungan M yang versi rilis terbaru yang ditandai adalah v1.2.3 , go.mod modul Anda akan berakhir dengan require M v1.2.3 , yang menunjukkan modul M adalah ketergantungan dengan versi yang diizinkan> = v1.2.3 (dan <v2, mengingat V2 dianggap tidak kompatibel dengan V1).v1.2.3 )./vN di akhir jalur modul yang digunakan dalam file go.mod (misalnya, module github.com/my/mod/v2 , require github.com/my/mod/v2 v2.0.0 ) & di jalur impor paket (EG, import "github.com/my/mod/v2/mypkg" .go.mod , provides the directory is outside $GOPATH/src . (Inside $GOPATH/src , for compatibility, the go command still runs in the old GOPATH mode, even if a go.mod is found) # Create a directory outside of your GOPATH:
$ mkdir -p /tmp/scratchpad/hello
$ cd /tmp/scratchpad/hello
# Initialize a new module:
$ go mod init github.com/you/hello
go: creating new go.mod: module github.com/you/hello
# Write your code
$ cat << EOF > hello.go
package main
import (
"fmt"
"rsc.io/quote"
)
func main() {
fmt.Println(quote.Hello())
}
EOF
# Introduce `go mod tidy`
# Tidy makes sure go.mod matches the source code in the module.
# It adds any missing modules necessary to build the current module's
# packages and dependencies, and it removes unused modules that
# don't provide any relevant packages. It also adds any missing entries
# to go.sum and removes any unnecessary ones
$ go mod tidy t/s/hello ﳑ
go: finding module for package rsc.io/quote
go: downloading rsc.io/quote v1.5.2
go: found rsc.io/quote in rsc.io/quote v1.5.2
go: downloading rsc.io/sampler v1.3.0
go: downloading golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c
$ cat go.mod
module github.com/you/hello
require rsc.io/quote v1.5.2
# Add a new dependency often brings in other indirect dependencies too
# List the current module and all its dependencies
$ go list -m all
github.com/you/hello
golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c
rsc.io/quote v1.5.2
rsc.io/sampler v1.3.0
# In addition to go.mod, there is a go.sum file containing the expected
# cryptographic hashes of the content of specific module versions
$ cat go.sum t/s/hello ﳑ
golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c h1:qgOY6WgZOaTkIIMiVjBQcw93ERBE4m30iBm00nkL0i8=
golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
rsc.io/quote v1.5.2 h1:w5fcysjrx7yqtD/aO+QwRjYZOKnaM9Uh2b40tElTs3Y=
rsc.io/quote v1.5.2/go.mod h1:LzX7hefJvL54yjefDEDHNONDjII0t9xZLPXsUe+TKr0=
rsc.io/sampler v1.3.0 h1:7uVkIFmeBqHfdjD+gZwtXXI+RODJ2Wc4O7MPEh/QiW4=
rsc.io/sampler v1.3.0/go.mod h1:T1hPZKmBbMNahiBKFy5HrXp6adAjACjK9JXDnKaTXpA=
# Build & run
$ go build
$ ./hello
Hello, world. # From the output of go list -m all, we're using an untagged version of golang.org/x/text
# Let's upgrade to the latest tagged version
$ go get golang.org/x/text t/s/hello ﳑ
go: downloading golang.org/x/text v0.7.0
go: upgraded golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c = > v0.7.0
$ cat go.mod t/s/hello ﳑ
module github.com/you/hello
go 1.19
require rsc.io/quote v1.5.2
require (
golang.org/x/text v0.7.0 // indirect
rsc.io/sampler v1.3.0 // indirect
)
$ go list -m all t/s/hello ﳑ
github.com/you/hello
golang.org/x/mod v0.6.0-dev.0.20220419223038-86c51ed26bb4
golang.org/x/sys v0.0.0-20220722155257-8c9f86f7a55f
golang.org/x/text v0.7.0
golang.org/x/tools v0.1.12
rsc.io/quote v1.5.2
rsc.io/sampler v1.3.0go mod tidy and Go does the rest.go tool provides go mod vendor command.go mod vendor command constructs a directory named vendor in the main module's root directory that contains copies of all packages needed to support builds and tests of packages in the main modules.go mod vendor also creates the file vendor/modules.txt that contains a list of vendored packages and the module versions they were copied from.vendor to your Version Control System, then copy this around. $ go mod vendor
# Main module's directory structure
$ tree -L 3
├── go.mod
├── go.sum
├── hello.go
└── vendor
├── golang.org
│ └── x
├── modules.txt
└── rsc.io
├── quote
└── samplergo tool defaults to downloading modules from the public Go module mirror: https://proxy.golang.org and also defaults to validating downloaded modules (regardless of source) against the public Go checksum database at https://sum.golang.org. export GOPROXY=https://goproxy.io,directgo command defaults to downloading modules from the public Go module mirror, therefore if you have private code, you most likely should configure the GOPRIVATE setting (such as go env -w GOPRIVATE=*.corp.com,github.com/secret/repo ), or the more fine-grained variants GONOPROXY or GONOSUMDB that support less frequent use cases. See the documentation for more details.go.work . The dependencies in this file can span multiple modules and anything declared in the go.work file will override dependencies in the module's go.mod .go.work file that specifies relative paths to the module directories of each the modules in the workspace. When no go.work file exists, the workspace consists of the single module containing the current directory.go.work files are defined in exactly the same way as for go.mod files. go 1.18
use . / my / first / thing
use . / my / second / thing
// or
// use (
// ./my/first/thing
// ./my/second/thing
// )
replace example . com / bad / thing v1 .4 .5 = > example . com / good / thing v1 .4 .5$ mkdir workspace
$ cd workspace
# Create hello module
$ mkdir hello
$ cd hello
$ go mod init eaxmple.com/hello
go: creating new go.mod: module example.com/hello
$ cat << EOF > hello.go
package main
import (
"fmt"
"golang.org/x/example/stringutil"
)
func main() {
fmt.Println(stringutil.Reverse("Hello"))
}
EOF
$ go mod tidy
go: finding module for package golang.org/x/example/stringutil
go: found golang.org/x/example/stringutil in golang.org/x/example v0.0.0-20220412213650-2e68773dfca0
$ go run example.com/hello
olleH
# Create the workspace
$ cd ../
$ go work init ./hello
$ tree
.
├── go.work
└── hello
├── go.mod
├── go.sum
└── hello.go
1 directory, 4 files
# Go command includes all the modules in the workspace as main modules. This allow us to refer to a package in the module
# even outside the module.
$ go run example.com/hello
olleH
# Download and modify the golang.org/x/example module
$ git clone https://go.googlesource.com/example
Cloning into ' example ' ...
remote: Total 165 (delta 27), reused 165 (delta 27)
Receiving objects: 100% (165/165), 434.18 KiB | 1022.00 KiB/s, done.
Resolving deltas: 100% (27/27), done.
# Add module to the workspace
$ go work use ./example
$ tree -L 1
.
├── example
├── go.work
└── hello
2 directories, 1 file
$ cat go.work
go 1.20
use (
./example
./hello
)
$ cd example/stringutil
# Create a new file
$ cat << EOF > toupper.go
package stringutil
import "unicode"
// ToUpper uppercases all the runes in its argument string.
func ToUpper(s string) string {
r := []rune(s)
for i := range r {
r[i] = unicode.ToUpper(r[i])
}
return string(r)
}
EOF
# Modify hello program
$ cd ../../hello
$ cat << EOF > hello.go
package main
import (
"fmt"
"golang.org/x/example/stringutil"
)
func main() {
fmt.Println(stringutil.ToUpper("Hello"))
}
EOF
$ cd ..
# Go command finds the example.com/hello module specified in the command line
# in the hello directory specified by the go.work file, and similiarly
# resolves the golang.org/x/example import using the go.work file.
$ go run example.com/hello
HELLOSource: https://go.dev/doc/modules/layout
Go projects can include packages, command-line programs or a combination of the two. This guide is organized by project type.
NOTE : throughout this document, file/package names are entirely arbitrary
project-root-directory/
go.mod
modname.go
modname_test.go
auth.go
auth_test.go
hash.go
hash_test.gomodname.go declares the package with: package modname
// ... package code here project-root-directory/
go.mod
auth.go
auth_test.go
client.go
main.gomain.go file contains func main , but this is just a convention. The “main” file can also be called modname.go (for an appropriate value of modname) or anything else. internal ; this prevents other modules from depending on packages we don't necessarily want to expose and support for external uses. Since other projects cannot import code from our internal directory, we're free to refactor its API and generally move things around without breaking external users. The project structure for a package is thus: project-root-directory/
internal/
auth/
auth.go
auth_test.go
hash/
hash.go
hash_test.go
go.mod
modname.go
modname_test.goproject-root-directory/
go.mod
modname.go
modname_test.go
auth/
auth.go
auth_test.go
token/
token.go
token_test.go
hash/
hash.go
internal/
trace/
trace.go module github . com / someuser / modname project-root-directory/
go.mod
internal/
... shared internal packages
prog1/
main.go
prog2/
main.gomain . A top-level internal directory can contain shared packages used by all commands in the repository.cmd directory; while this isn't strictly necessary in a repository that consists only of commands, it's very useful in a mixed repository that has both commands and importable packages, as we will discuss next. project-root-directory/
go.mod
modname.go
modname_test.go
auth/
auth.go
auth_test.go
internal/
... internal packages
cmd/
prog1/
main.go
prog2/
main.gointernal directory. Moreover, since the project is likely to have many other directories with non-Go files, it's a good idea to keep all Go commands together in a cmd directory: project-root-directory/
go.mod
internal/
auth/
...
metrics/
...
model/
...
cmd/
api-server/
main.go
metrics-analyzer/
main.go
...
... the project ' s other directories with non-Go codeGo models data input and output as a stream that flows from sources to targets. Data sources, such as files, network connections, or even some in-memory objects , can be modeled as streams of bytes from which data can be read or written to.
The most common usage of the fmt package is for writting to standard output and reading from standard input.
type metalloid struct {
name string
number int32
weight float64
}
func main () {
var metalloids = [] metalloid {
{ "Boron" , 5 , 10.81 },
...
{ "Polonium" , 84 , 209.0 },
}
file , _ := os . Create ( "./metalloids.txt" )
defer file . Close ()
for _ , m := range metalloids {
fmt . Fprintf (
file ,
"%-10s %-10d %-10.3f n " ,
m . name , m . number , m . weight ,
)
}
} The bufio package offers several functions to do buffered writing of IO streams using an `io.Writer interface.
In bytes package offers common primitives to achieve streaming IO on blocks of bytes stored in memory, represented by the bytes.Buffer byte. Since the bytes.Buffer type implements both io.Reader and io.Writer interfaces it is a great option to stream data into or out of memory using streaming IO primitives.
package main
import (
"encoding/json"
"fmt"
)
type Measurement struct {
Height int
Weight int
}
type Person struct {
Name string
Age int
Measurement Measurement // Nested object
}
func main () {
bob := & Person {
Name : "Bob" ,
Age : 20 ,
}
bobRaw , _ := json . Marshal ( bob )
fmt . Println ( string ( bobRaw ))
// Raw data without Measurement field
aliceRaw := [] byte ( `{"name": "Alice", "age": 23}` )
var alice Person
if err := json . Unmarshal ( aliceRaw , & alice ); err != nil {
panic ( err )
}
fmt . Printf ( "%+v n " , alice )
}
// {"Name":"Bob","Age":20,"Measurement":{"Height":190,"Weight":75}}
// {Name:Alice Age:23 Measurement:{Height:0 Weight:0}} package main
import (
"encoding/json"
"fmt"
)
type Measurement struct {
Height int `json:"height"`
Weight int `json:"weight"`
}
type Person struct {
Name string `json:"who"`
Age int `json:"how old"`
Measurement Measurement `json:"mm"`
}
func main () {
bob := & Person {
Name : "Bob" ,
Age : 20 ,
}
bobRaw , _ := json . Marshal ( bob )
fmt . Println ( string ( bobRaw ))
// Raw data without Measurement field
aliceRaw := [] byte ( `{"who": "Alice", "how old": 23, "mm": {"height": 150, "weight": 40}}` )
var alice Person
if err := json . Unmarshal ( aliceRaw , & alice ); err != nil {
panic ( err )
}
fmt . Printf ( "%+v" , alice )
}
// {"who":"Bob","how old":20,"mm":{"height":0,"weight":0}}
// {Name:Alice Age:23 Measurement:{Height:150 Weight:40}} package main
import (
"encoding/json"
"fmt"
)
func main () {
// Raw data without Measurement field
aliceRaw := [] byte ( `{"name": "Alice", "age": 23, "measurement": {"height": 150, "weight": 40}}` )
var alice map [ string ] interface {}
if err := json . Unmarshal ( aliceRaw , & alice ); err != nil {
panic ( err )
}
// the object stored in the "mesurement" key is also stored
// as a map[string]interface{} type, and its type is asserted
// the interface{} type
measurement := alice [ "measurement" ].( map [ string ] interface {})
fmt . Printf ( "%+v n " , alice )
fmt . Printf ( "%+v n " , measurement )
}
// map[age:23 measurement:map[height:150 weight:40] name:Alice]
// map[height:150 weight:40]omitempty property. package main
import (
"encoding/json"
"fmt"
)
type Measurement struct {
Height int `json:"height"`
Weight int `json:"weight"`
}
type Person struct {
Name string `json:"name"`
Age int `json:"age,omitempty"`
Measurement Measurement `json:"measurement"`
}
func main () {
bob := & Person {
Name : "Bob" ,
Measurement : Measurement {
Height : 190 ,
Weight : 75 ,
},
}
bobRaw , _ := json . Marshal ( bob )
fmt . Println ( string ( bobRaw ))
}
// Age field is ignored
// {"name":"Bob","measurement":{"height":190,"weight":75}}NOTE : There are a lot more helpful things in tips-notes. You may want to check it out.
Go Web Example
A basic HTTP server has a few key jobs to take care of:
package main
import (
"fmt"
"net/http"
)
func main () {
// Process dynamic request
http . HandleFunc ( "/" , func ( w http. ResponseWriter , r * http. Request ) {
fmt . Fprintf ( w , "Welcome to my website!" )
})
// Serving static assets
fs := http . FileServer ( http . Dir ( "static/" ))
http . Handle ( "/static/" , http . StripPrefix ( "/static/" , fs ))
// Accept connections
http . ListenAndServe ( ":80" , nil )
}A simple logging middleware.
// basic-middleware.go
package main
import (
"fmt"
"log"
"net/http"
)
func logging ( f http. HandlerFunc ) http. HandlerFunc {
return func ( w http. ResponseWriter , r * http. Request ) {
log . Println ( r . URL . Path )
f ( w , r )
}
}
func foo ( w http. ResponseWriter , r * http. Request ) {
fmt . Fprintln ( w , "foo" )
}
func bar ( w http. ResponseWriter , r * http. Request ) {
fmt . Fprintln ( w , "bar" )
}
func main () {
http . HandleFunc ( "/foo" , logging ( foo ))
http . HandleFunc ( "/bar" , logging ( bar ))
http . ListenAndServe ( ":8080" , nil )
} A middleware in itself simple takes a http.HandleFunc as one of its parameters, wraps it & returns a new http.HandlerFunc for the server to call.
Define a new type Middleware which makes it eventually easier to chain multiple middlewares together.
How a new middleware is created, boilerplate code:
func newMiddleware () Middleware {
// Create a new Middleware
middleware := func ( next http. HandlerFunc ) http. HandlerFunc {
// Define the http.HandlerFunc which is called by the server eventually
handler := func ( w http. ResponseWriter , r * http. Request ) {
// ... do middleware things
// Call the next middleware/handler in chain
next ( w , r )
}
// Return newly created handler
return handler
}
// Return newly created middleware
return middleware
} // advanced-middleware.go
package main
import (
"fmt"
"log"
"net/http"
"time"
)
type Middleware func (http. HandlerFunc ) http. HandlerFunc
// Logging logs all requests with its path & the time it took to process
func Logging () Middleware {
// Create a new Middleware
return func ( f http. HandlerFunc ) http. HandlerFunc {
// Define the http.HandlerFunc
return func ( w http. ResponseWriter , r * http. Request ) {
// Do middleware things
start := time . Now ()
defer func () { log . Println ( r . URL . Path , time . Since ( start )) }()
// Call the next middleware/handler in chain
f ( w , r )
}
}
}
// Method ensures that url can only be requested with a specific method, else returns a 400 Bad Request
func Method ( m string ) Middleware {
// Create a new Middleware
return func ( f http. HandlerFunc ) http. HandlerFunc {
// Define the http.HandlerFunc
return func ( w http. ResponseWriter , r * http. Request ) {
// Do middleware things
if r . Method != m {
http . Error ( w , http . StatusText ( http . StatusBadRequest ), http . StatusBadRequest )
return
}
// Call the next middleware/handler in chain
f ( w , r )
}
}
}
// Chain applies middlewares to a http.HandlerFunc
func Chain ( f http. HandlerFunc , middlewares ... Middleware ) http. HandlerFunc {
for _ , m := range middlewares {
f = m ( f )
}
return f
}
func Hello ( w http. ResponseWriter , r * http. Request ) {
fmt . Fprintln ( w , "hello world" )
}
func main () {
http . HandleFunc ( "/" , Chain ( Hello , Method ( "GET" ), Logging ()))
http . ListenAndServe ( ":8080" , nil )
}This section is mainly taken from: https://github.com/zalopay-oss/go-advanced/blob/master/ch3-rpc/ch3-01-rpc-go.md
// 13/rpc/rpcserver/main.go
package main
import (
"log"
"net"
"net/rpc"
)
type HelloService struct {}
// Only methods that satisfy these criteria will be made available for remote access; other methods will be ignored:
// - the method's type is exported.
// - the method is exported.
// - the method has two arguments, both exported (or builtin) types.
// - the method's second argument is a pointer.
// - the method has return type error.
// func (t *T) MethodName(argType T1, replyType *T2) error
func ( p * HelloService ) Hello ( request string , reply * string ) error {
* reply = "Hello " + request
return nil
}
func main () {
rpc . RegisterName ( "HelloService" , new ( HelloService ))
listener , err := net . Listen ( "tcp" , ":8081" )
if err != nil {
log . Fatal ( "Listen TCP error:" , err )
}
log . Println ( "Server is ready" )
for {
// accept connection
conn , err := listener . Accept ()
if err != nil {
log . Fatal ( "Accept error:" , err )
}
// serve client in another goroutine
go func () {
log . Println ( "Accept new client:" , conn . RemoteAddr ())
rpc . ServeConn ( conn )
}()
}
} // 13/rpc/rpcclient/main.go
package main
import (
"log"
"net/rpc"
)
func main () {
client , err := rpc . Dial ( "tcp" , "localhost:8081" )
if err != nil {
log . Fatal ( "Dialing error:" , err )
}
var reply string
if err = client . Call ( "HelloService.Hello" , "Kien" , & reply ); err != nil {
log . Fatal ( err )
}
log . Println ( reply )
} # Server
$ go run examples/13/rpc/rpcserver/main.go
2023/08/09 16:29:29 Server is ready
2023/08/09 16:29:30 Accept new client: 127.0.0.1:38728
2023/08/09 16:29:31 Accept new client: 127.0.0.1:38734
# Client
$ go run examples/13/rpc/rpcclient/main.go
2023/08/09 16:29:30 Hello Kien
$ go run examples/13/rpc/rpcclient/main.go
2023/08/09 16:29:31 Hello Kienprotoc : # Ubuntu
# https://grpc.io/docs/protoc-installation/#install-using-a-package-manager
$ sudo apt install -y protobuf-compiler
# install go plugin
$ go install github.com/golang/protobuf/protoc-gen-go@latesthello.proto : // version proto3
syntax = "proto3" ;
// generated package name
package main ;
message String {
string value = 1 ;
}Generate Golang source code:
gRPC is a high performance, open-source remote procedure call (RPC) framework that can run anywhere. It enables client and server applications to communicate transparently, and makes it easier to build connected systems.
The gRPC server implements the service interface and runs an RPC server to handle client calls to its service methods. On the client side, the client has a stub (referred to as just a client in some languages) that provides the same methods as the server.
This section is about the new packages be added.
unique packageSource: https://go.dev/blog/unique
var internPool map [ string ] string
// Intern returns a string that is equal to s but that may share storage with
// a string previously passed to Intern.
func Intern ( s string ) string {
pooled , ok := internPool [ s ]
if ! ok {
// Clone the string in case it's part of some much bigger string.
// This should be rare, if interning is being used well.
pooled = strings . Clone ( s )
internPool [ pooled ] = pooled
}
return pooled
}unique package introduces a function similar to Intern called Make. But it also differs from Intern in two important ways:Handle[T] has the property that two Handle[T] values are equal if and only if the values used to create them are equal. The comparison of two Handle[T] values is cheap: it comes down to a pointer comparison.net/netip package in the standard library, which interns values of type addrDetail , part of the netip.Addr structure.netip.Addr , while the fact that they're canonicalized mean netip.Addr values are more efficient to compare, since comparing zone names becaomes a simple pointer comparison. // Addr represents an IPv4 or IPv6 address (with or without a scoped
// addressing zone), similar to net.IP or net.IPAddr.
type Addr struct {
// Other irrelevant unexported fields...
// Details about the address, wrapped up together and canonicalized.
z unique. Handle [ addrDetail ]
}
// addrDetail indicates whether the address is IPv4 or IPv6, and if IPv6,
// specifies the zone name for the address.
type addrDetail struct {
isV6 bool // IPv4 is false, IPv6 is true.
zoneV6 string // May be != "" if IsV6 is true.
}
var z6noz = unique . Make ( addrDetail { isV6 : true })
// WithZone returns an IP that's the same as ip but with the provided
// zone. If zone is empty, the zone is removed. If ip is an IPv4
// address, WithZone is a no-op and returns ip unchanged.
func ( ip Addr ) WithZone ( zone string ) Addr {
if ! ip . Is6 () {
return ip
}
if zone == "" {
ip . z = z6noz
return ip
}
ip . z = unique . Make ( addrDetail { isV6 : true , zoneV6 : zone })
return ip
}There is the page lists a few resources for programmers interested in learning about the Golang.
Oops, actually you can refer to awesome-go for a complete list.