
Inhaltsverzeichnis
unique PaketDie Golang -Dokumentation zu finden ist keine große Sache. Es gibt viele gute Ressourcen, wählen Sie einfach eine und beginnen Sie Ihre Lernreise. Ich folge hauptsächlich Learning Go - Miek Gieben.
Hinweis : Alle Beispiele in dieser Dokumentation werden in den nach Abschnitt bezeichneten Verzeichnissen gespeichert. Ich gehe davon aus, dass jede Befehle in Abschnitt X in Beispiel/X -Verzeichnis ausgeführt wird, sodass ich keinen vollständigen Pfad zum Skriptdatei schreibe.
/* hello_world.go */
package main
import "fmt" // Implements formatted I/O
/* Say Hello-World */
func main () {
fmt . Printf ( "Hello World" )
}go build helloworld.go # Return an executable called helloworld./helloworldgo run helloworld.go /* When you declare a variable it is assigned the "natural" null value for the type */
var a int // a has a value of 0
var s string // s is assigned the zero string, which is ""
a = 26
s = "hello"
/* Declaring & assigning in Go is a two step process, but they may be combined */
a := 26 // In this case the variable type is deduced from the value. A value of 26 indicates an int for example.
b := "hello" // The type should be string
/* Multiple var declarations may also be grouped (import & const also allow this) */
var (
a int
b string
)
/* Multiple variables of the same type ca also be declared on a single line */
var a , b int
a , b := 26 , 9
/* A special name for a variable is _, any value assigned to it is discarded. */
_ , b := 26 , 9 Boolean : bool
Numerisch :
int - es hat die entsprechende Länge für Ihre Maschine (32 -Bit -Maschine - 32 Bit, 64 -Bit -Maschine - 64 Bit).int8 , int16 , int32 , int64 & byte (ein Alias für uint8 ), uint8 , uint16 , uint32 , uint64 .float32 , float64 , /* numerical_types.go */
package main
func main () {
var a int
var b int32
b = a + a // Give an error: cannot use a + a (type int) as type int32 in assignment.
b = b + 5
} Konstanten: Konstanten werden zur Kompilierungszeit erstellt und können nur Zahlen, Saiten oder Boolesche sein. Sie können iota verwenden, um Werte aufzählen.
const (
a = iota // First use of iota will yield 0. Whenever iota is used again on a new line its value is incremented with 1, so b has a vaue of 1.
b
)Saiten :
string in Go ist. Beachten Sie, dass! In Python (meine bevorzugte Programmiersprache) kann ich beide für die Stringzuordnung verwenden. s1 := "Hello"
c := [] rune ( s ) // Convert s1 to an array of runes
c [ 0 ] := 'M'
s2 := string ( c ) // Create a new string s2 with the alteration
fmt . Printf ( "%s n " , s2 ) Rune : Rune ist ein Alias für int32 (verwenden Sie, wenn Sie die Zeichen in einer Zeichenfolge iterieren).
Komplexe Zahlen : complex128 (64 Bit Real & Imaginary Teile) oder complex32 .
Fehler : Go hat einen integrierten Typ speziell für Fehler, der error.var e bezeichnet wird.
Go 1.18 unterstützt generische Typen . Die von GO 1.18 bereitgestellte Generika -Implementierung folgt dem Vorschlag für Typparameter und ermöglicht es Entwicklern, optionale Typparameter für Typ- und Funktionserklärung hinzuzufügen. Checkout Golangs Generics Tutorial.
package main
import "fmt"
type Number interface {
int64 | float64
}
func main () {
// Initialize a map for the integer values
ints := map [ string ] int64 {
"first" : 34 ,
"second" : 12 ,
}
// Initialize a map for the float values
floats := map [ string ] float64 {
"first" : 35.98 ,
"second" : 26.99 ,
}
fmt . Printf ( "Non-Generic Sums: %v and %v n " ,
SumInts ( ints ),
SumFloats ( floats ))
fmt . Printf ( "Generic Sums: %v and %v n " ,
SumIntsOrFloats [ string , int64 ]( ints ),
SumIntsOrFloats [ string , float64 ]( floats ))
fmt . Printf ( "Generic Sums, type parameters inferred: %v and %v n " ,
SumIntsOrFloats ( ints ),
SumIntsOrFloats ( floats ))
fmt . Printf ( "Generic Sums with Constraint: %v and %v n " ,
SumNumbers ( ints ),
SumNumbers ( floats ))
}
// SumInts adds together the values of m.
func SumInts ( m map [ string ] int64 ) int64 {
var s int64
for _ , v := range m {
s += v
}
return s
}
// SumFloats adds together the values of m.
func SumFloats ( m map [ string ] float64 ) float64 {
var s float64
for _ , v := range m {
s += v
}
return s
}
// SumIntsOrFloats sums the values of map m. It supports both floats and integers
// as map values.
func SumIntsOrFloats [ K comparable , V int64 | float64 ]( m map [ K ] V ) V {
var s V
for _ , v := range m {
s += v
}
return s
}
// SumNumbers sums the values of map m. Its supports both integers
// and floats as map values.
func SumNumbers [ K comparable , V Number ]( m map [ K ] V ) V {
var s V
for _ , v := range m {
s += v
}
return s
} Precedence Operator(s)
Highest * / % << >> & &^
`+ -
== != < <= > >=
<-
&&
Lowest ||
& bitweise und, | bitweise oder, ^ xor &^ bit klar. break default func interface select
case defer go map struct
chan else goto package switch
const fallthrough if range type
continue for import return var
var , const , package , import werden in den vorherigen Abschnitten verwendet.func wird verwendet, um Funktionen und Methoden zu deklarieren.return wird verwendet, um von Funktionen zurückzukehren.go wird für die Parallelität verwendet.select wird verwendet, um aus verschiedenen Kommunikationsarten auszuwählen.interface .struct wird für abstrakte Datentypen verwendet.type . if x > 0 {
return y
} esle {
return x
}
if err := MagicFunction (); err != nil {
return err
}
// do somethinggoto springen Sie zu einem Etikett, das in der aktuellen Funktion definiert werden muss. /* goto_test */
/* Create a loop */
func gototestfunc () {
i := 0
Here:
fmt . Println ()
i ++
goto Here
}for Schleife hat nur eine Semikolone: nur eine von drei Formen: for init ; condition ; post { } // aloop using the syntax borrowed from C
for condition { } // a while loop
for { } // a endless loop
sum := 0
for i := 0 ; i < 10 ; i ++ {
sum = sum + i
} for i := 0 ; i < 10 ; i ++ {
if i > 5 {
break
}
fmt . Println ( i )
}
/* With loops within loop you can specify a label after `break` to identify which loop to stop */
J: for j := 0 ; j < 5 ; j ++ {
for i := 0 ; i < 10 ; i ++ {
if i > 5 {
break J
}
fmt . Println ( i )
}
}Reichweite :
range kann für Schleifen verwendet werden. Es kann über Scheiben, Arrays, Saiten, Karten und Kanäle schleifen.range ist ein Iterator, der beim Aufrufen das nächste Schlüsselwertpaar aus dem "Ding" zurückgibt. list := [] string { "a" , "b" , "c" , "d" , "e" , "f" }
for k , v := range list {
// do some fancy thing with k & v
}Schalten :
switch keinen Ausdruck hat, schaltet er true ein.if-else-if-else Kette als switch zu schreiben. /* Convert hexadecimal character to an int value */
switch { // switch without condition = switch true
case '0' <= c && c <= '9' :
return c - '0'
case 'a' <= c && c <= 'f' :
return c - 'a' + 10
case 'A' <= c && c <= 'F' :
return c - 'A' + 10
}
return 0
/* Automatic fall through */
switch i {
case 0 : fallthrough
case 1 :
f ()
default :
g ()
} close new panic complex
delete make recover real
len append print imag
cap copy println
len verwendet, um die Längen von Streitigkeiten, Karten, Scheiben und Arrays zurückzugeben.copy ist für das Kopieren von Scheiben. Und append ist für die Verkettung von Scheiben.Brief: Liste -> Arrays, Scheiben. DICT -> MAP
Arrays :
[n]<type> definiert. var arr [ 10 ] int // The size is part of the type, fixed size
arr [ 0 ] = 42
arr [ 1 ] = 13
fmt . Printf ( "The first element is %s n " , arr [ 0 ])
// Initialize an array to something other than zero, using composite literal
a := [ 3 ] int { 1 , 2 , 3 }
a := [ ... ] int { 1 , 2 , 3 }Scheiben :
// Init array primes
primes := [ 6 ] int { 2 , 3 , 5 , 7 , 11 , 13 }
// Init slice s
var s [] int = primes [ 1 : 4 ]
fmt . Println ( s ) // Return [3, 5, 7]
/* slice_length_capacity.go */
package main
import "fmt"
func main () {
s := [] int { 2 , 3 , 5 , 7 , 11 , 13 }
printSlice ( s )
// Slice the slice to give it zero length.
s = s [: 0 ]
printSlice ( s )
// Extend its length.
s = s [: 4 ]
printSlice ( s )
// Drop its first two values.
s = s [ 2 :]
printSlice ( s )
}
func printSlice ( s [] int ) {
fmt . Printf ( "len=%d cap=%d %v n " , len ( s ), cap ( s ), s )
} s := make ([] byte , 5 ) len ist die Anzahl der Elemente, auf die das Slice bezeichnet wird.
cap ist die Anzahl der Elemente im zugrunde liegenden Array (beginnend am Element, auf das der Slice -Zeiger bezeichnet wird).
s = s [ 2 : 4 ]Durch das Schneiden kopiert die Daten des Slice nicht. Es schafft ein neues Stück, das auf das ursprüngliche Array verweist. Dies macht Slice -Operationen so effizient wie manipulierende Array -Indikationen. Daher modifiziert das Ändern der Elemente (nicht der Scheibe selbst) einer Wiederverbrennung die Elemente der ursprünglichen Scheibe:
d := [] byte { 'r' , 'o' , 'a' , 'd' }
e := d [ 2 :]
// e = []byte{'a', 'd'}
e [ 1 ] = 'm'
// e = []byte{'a', 'm'}
// d = []byte{'r', 'o', 'a', 'm'}s auf eine Länge kürzer als die Kapazität. Wir können s seiner Kapazität wachsen, indem wir es erneut schneiden. s = s [: cap ( s )]Eine Scheibe kann nicht über seine Kapazität hinausgewachsen werden.
// Another example
var array [ m ] int
slice := array [: n ]
// len(slice) == n
// cap(slice) == m
// len(array) == cap(array) == mappend und copy . s0 := [] int { 0 , 0 }
s1 := append ( s0 , 2 ) // same type as s0 - int.
// If the original slice isn't big enough to fit the added values,
// append will allocate a new slice that is big enough. So the slice
// returned by append may refer to a different underlaying array than
// the original slices does.
s2 := append ( s1 , 3 , 5 , 7 )
s3 := append ( s2 , s0 ... ) // []int{0, 0, 2, 3, 5, 7, 0, 0} - three dots used after s0 is needed make it clear explicit that you're appending another slice, instead of a single value
var a = [ ... ] int { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 }
var s = make ([] int , 6 )
// copy function copies slice elements from source to a destination
// returns the number of elements it copied
n1 := copy ( s , a [ 0 :]) // n1 = 6; s := []int{0, 1, 2, 3, 4, 5}
n2 := copy ( s , s [ 2 :]) // n2 = 4; s := []int{2, 3, 4, 5, 4, 5}Karten :
map . monthdays := map [ string ] int {
"Jan" : 31 , "Feb" : 28 , "Mar" : 31 ,
"Apr" : 30 , "May" : 31 , "Jun" : 30 ,
"Jul" : 31 , "Aug" : 31 , "Sep" : 30 ,
"Oct" : 31 , "Nov" : 30 , "Dec" : 31 , // A trailing comma is required
}
value , key := monthdays [ "Jan" ]make , wenn Sie nur eine Karte deklarieren. Eine Karte ist Referenztyp . Eine Karte ist keine Referenzvariable, ihr Wert ist ein Zeiger auf eine runtime.hmap -Struktur. // A struct is a type. It's also a collection of fields
// Declaration
type Vertex struct {
X , Y float64
}
// Creating
var v = Vertex { 1 , 2 }
var v = Vertex { X : 1 , Y : 2 } // Creates a struct by defining values with keys
var v = [] Vertex {{ 1 , 2 },{ 5 , 2 },{ 5 , 5 }} // Initialize a slice of structs
// Accessing members
v . X = 4
// You can declare methods on structs. The struct you want to declare the
// method on (the receiving type) comes between the the func keyword and
// the method name. The struct is copied on each method call(!)
func ( v Vertex ) Abs () float64 {
return math . Sqrt ( v . X * v . X + v . Y * v . Y )
}
// Call method
v . Abs ()
// For mutating methods, you need to use a pointer (see below) to the Struct
// as the type. With this, the struct value is not copied for the method call.
func ( v * Vertex ) add ( n float64 ) {
v . X += n
v . Y += n
}map[string]intefaces . // ReadWriter implementations must satisfy both Reader and Writer
type ReadWriter interface {
Reader
Writer
}
// Server exposes all the methods that Logger has
type Server struct {
Host string
Port int
* log. Logger
}
// initialize the embedded type the usual way
server := & Server { "localhost" , 80 , log. New ( ... )}
// methods implemented on the embedded struct are passed through
server. Log ( ... ) // calls server.Logger.Log(...)
// the field name of the embedded type is its type name (in this case Logger)
var logger * log. Logger = server. Logger // General Function
type mytype int
func ( p mytype ) funcname ( q , int ) ( r , s int ) { return 0 , 0 }
// p (optional) bind to a specific type called receiver (a function with a receiver is usually called a method)
// q - input parameter
// r,s - return parameters import "fmt"
func main () {
a := func () { // a is defined as an anonymous (nameless) function,
fmt . Println ( "Hello" )
}
a ()
} func printit ( x int ) {
fmt . Println ( "%v n " , x )
}
func callback ( y int , f func ( int )) {
f ( y )
} /* Open a file & perform various writes & reads on it. */
func ReadWrite () bool {
file . Open ( "file" )
// Do your thing
if failureX {
file . Close ()
return false
}
// Repeat a lot of code.
if failureY {
file . Close ()
return false
}
file . Close ()
return true
}
/* Same situation but using defer */
func ReadWrite () bool {
file . Open ( "file" )
defer file . Close () // add file.Close() to the defer list
// Do your thing
if failureX {
return false
}
if failureY {
return false
}
return true
}Defer werden in der Lebenslaufreihenfolge ausgeführt. for i := 0 ; i < 5 ; i ++ {
defer fmt . Printf ( "%d " , i ) // 4 3 2 1 0
}defer können Sie sogar die Rückgabeteile ändern, vorausgesetzt, Sie verwenden benannte Ergebnisparameter und eine Funktion buchstäblich ( def func(x int) {/*....*/}(5) ). func f () ( ret int )
defer func () { // Initialized with zero
ret ++
}()
return 0 // This will not be the returned value, because of defer. Ths function f will return 1
} func func1 ( arg ... int ) { // the variadic parameter is just a slice.
for _ , n := range arg {
fmt . Printf ( "And the number is: %d n " , n )
}
}pacnic aufruft, werden die Ausführung von F -Stopps aufgeschobene Funktionen in F normal ausgeführt und dann f zu seinem Anrufer zurückgeführt. Für den Anrufer verhält sich F dann wie ein Aufruf zur Panik. Der Prozess setzt den Stapel fort, bis alle Funktionen in der aktuellen Goroutine zurückgekehrt sind, und an diesem Punkt stürzt das Programm ab. Panik kann durch direktes Aufrufen von Panik initiiert werden. Sie können auch durch Laufzeitfehler verursacht werden, wie z. B. Array-Zugriffe außerhalb des Bounds. /* defer_panic_recover.go */
package main
import "fmt"
func main () {
f ()
fmt . Println ( "Returned normally from f." )
}
func f () {
defer func () {
if r := recover (); r != nil {
fmt . Println ( "Recovered in f" , r )
}
}()
fmt . Println ( "Calling g." )
g ( 0 )
fmt . Println ( "Returned normally from g." )
}
func g ( i int ) {
if i > 3 {
fmt . Println ( "Panicking!" )
panic ( fmt . Sprintf ( "%v" , i ))
}
defer fmt . Println ( "Defer in g" , i )
fmt . Println ( "Printing in g" , i )
g ( i + 1 )
}
/* Result */
// Calling g.
// Printing in g 0
// Printing in g 1
// Printing in g 2
// Printing in g 3
// Panicking!
// Defer in g 3
// Defer in g 2
// Defer in g 1
// Defer in g 0
// Recovered in f 4
// Returned normally from f. package even
func Even ( i int ) bool { // starts with capital -> exported
return i % 2 == 0
}
func odd ( i int ) bool { // start with lower-case -> private
return i % 2 == 1
}mkdir $GOPATH /src/even
cp even.go $GOPATH /src/even
go build
go installimport "even" verwenden.import bar "bytes" .src/compress/gzip wird als compress/gzip importiert, hat jedoch den Namen gzip , nicht compress/gzip .ring.Ring -Pakets ( container/ring ) zu erstellen, wird normalerweise als NewRing bezeichnet. Da Ring jedoch der einzige vom Paket exportierte Typ ist, da das Paket ring heißt, heißt es nur New . Kunden des Pakets sehen das als ring.New .doc.go zu haben, der nur den Paketkommentar enthält. /*
The regexp package implements a simple library for
regular expressions.
The syntax of the regular expressions accepted is:
regexp:
concatenation { '|' concatenation }
*/
package regexpmain die Eintragsdatei für die Ausführung.main wird init -Funktion von GO aufgerufen, wenn ein Paket initialisiert wird. Es erfordert keine Argumente und gibt keinen Wert zurück. init -Funktion wird implizit durch GO deklariert. Sie können mehrere init -Funktionen in einer Datei oder einem Paket haben. Die Reihenfolge der Ausführung der init -Funktion in einer Datei erfolgt gemäß der Reihenfolge ihrer Erscheinungen.null fungiert.go run * .go
├── Main package is executed
├── All imported packages are initialized
| ├── All imported packages are initialized (recursive definition)
| ├── All global variables are initialized
| └── init functions are called in lexical file name order
└── Main package is initialized
├── All global variables are initialized
└── init functions are called in lexical file name order Die Installation eines Drittanbieters ist nichts anderes als das Klonen des Remote -Code in das lokale src/<package> -Verzeichnis. Leider unterstützt Go keine Paketversion oder bietet Paketmanager, aber hier wartet ein Vorschlag.
testing und das Programm go test . package main
func Sum ( x int , y int ) int {
return x + y
}
func main () {
Sum ( 5 , 5 )
}
// Testcase
package main
import "testing"
func TestSum ( t * testing. T ) {
total := Sum ( 5 , 5 )
if total != 10 {
t . Errorf ( "Sum was incorrect, got: %d, want: %d." , total , 10 )
}
} package main
import "testing"
func TestSum ( t * testing. T ) {
tables := [] struct {
x int
y int
n int
}{
{ 1 , 1 , 2 },
{ 1 , 2 , 3 },
{ 2 , 2 , 4 },
{ 5 , 2 , 7 },
}
for _ , table := range tables {
total := Sum ( table . x , table . y )
if total != table . n {
t . Errorf ( "Sum of (%d+%d) was incorrect, got: %d, want: %d." , table . x , table . y , total , table . n )
}
}
}Starttests:
go testgo test github.com/username/packageHTTP -Tests:
net/http/httptest -Subpackage erleichtert die Testautomatisierung sowohl des HTTP-Servers als auch des Client-Codes.httptest.ResponseRecorder ist speziell so konzipiert, dass die Funktionen für Unit -Tests für die Ausübung der HTTP -Handler -Methoden bereitgestellt werden, indem Änderungen des Zustands in der HTTP.Responsewriter in der getesteten Funktion überprüft werden.httptest Typ httptest.Server um Server programmgesteuert zu erstellen, um Client -Anfragen zu testen und Scheinantworten an den Client zurückzugeben. Erklärung Abdeckung: Das go test Tool verfügt über eine integrierte Codeabdeckung für Anweisungen.
$ go test -cover
PASS
coverage: 50.0% of statements
ok github.com/alexellis/golangbasics1 0.009s
# Generate a HTML coverage report.
$ go test -cover -coverprofile=c.out
$ go tool cover -html=c.out -o coverage.htmlCode -Benchmark: Der Zweck des Benchmarking besteht darin, die Leistung eines Codes zu messen. Das Go-Test-Command-Line-Tool wird mit der automatisierten Erzeugung und Messung von Benchmark-Metriken unterstützt. Ähnlich wie bei Unit -Tests verwendet das Testwerkzeug Benchmark -Funktionen, um zu messen, welchen Teil des Codes.
Den Benchmark ausführen
$ > go test -bench=.
PASS
BenchmarkVectorAdd-2 2000000 761 ns/op
BenchmarkVectorSub-2 2000000 788 ns/op
BenchmarkVectorScale-2 5000000 269 ns/op
BenchmarkVectorMag-2 5000000 243 ns/op
BenchmarkVectorUnit-2 3000000 507 ns/op
BenchmarkVectorDotProd-2 3000000 549 ns/op
BenchmarkVectorAngle-2 2000000 659 ns/op
ok github.com/vladimirvivien/learning-go/ch12/vector 14.123sTestfunktionen überspringen
> go test -bench=. -run=NONE -v
PASS
BenchmarkVectorAdd-2 2000000 791 ns/op
BenchmarkVectorSub-2 2000000 777 ns/op
Code Testing
[ 314 ]
...
BenchmarkVectorAngle-2 2000000 653 ns/op
ok github.com/vladimirvivien/learning-go/ch12/vector 14.069sVergleichende Benchmarks: Um die Leistung verschiedener Algorithmen zu vergleichen, die ähnliche Funktionen implementieren. Die Ausübung der Algorithmen mit Leistungsbenchmarks zeigt an, welche der Implementierungen möglicherweise berechnet und speicherer effizienter sind.
Abhängigkeiten isolieren: Der Schlüsselfaktor, der einen Unit -Test definiert, ist die Isolierung von Laufzeitabhängigkeiten oder Mitarbeitern. Überprüfen Sie die Abhängigkeitsinjektion.
FMT : Paket fmt implementiert formatierte E/A mit Funktionen analog zu Cs printf & scanf . Die Formatverben stammen aus C, aber einfacher. Einige Verben (%-sequenzen) können verwendet werden:
IO : Das Paket bietet grundlegende Schnittstellen für E/A -Primitiven. Seine Hauptaufgabe besteht darin, die vorhandene Implementierung solcher Primitiven, wie os .
Bufio : Dieses Paket implementiert gepufferte E/O. Es wickelt ein IO.Reader- oder IO.Writer -Objekt ein und erstellt ein anderes Objekt (Leser oder Schriftsteller), das auch die Schnittstelle implementiert, aber Pufferung und einige Hilfe für die Text -I/O bietet.
SORT : Das Sortierpaket bietet Primitive für die Sortierung von Arrays und benutzerdefinierten Sammlungen.
STRCONV : Das StrConv -Paket implementiert Conversions zu & von String -Darstellungen grundlegender Datentypen.
OS : Das OS-Paket bietet eine plattformunabhängige Schnittstelle zur Funktionalität des Betriebssystems. Das Design ist unixartig.
Synchronisation : Die Paketsynchronisation bietet grundlegende Synchronisationsprimitive wie gegenseitige Ausschlussschlösser.
Flag : Das Flag-Paket implementiert die Befehlszeilen-Flag-Parsen.
Codierung/JSON : Das Coding/JSON -Paket implementiert Codierung und Dekodierung von JSON -Objekten wie in RFC 4627 definiert.
HTML/Vorlage : Datenorientierte Vorlagen zum Generieren von Textausgaben wie HTML.
NET/HTTP : Das Net/HTTP -Paket implementiert die Parsen von HTTP -Anforderungen, Antworten und URLs und bietet einen erweiterbaren HTTP -Server und einen grundlegenden HTTP -Client.
Unsicher : Das unsichere Paket enthält Operationen, die die Art von GO -Programmen durchführen. Normalerweise brauchen Sie dieses Paket nicht, aber es ist erwähnenswert, dass unsichere GO -Programme möglich sind.
Reflect : Das reflektierende Paket implementiert die Laufzeitreflexion, sodass ein Programm Objekte mit willkürlichen Typen manipulieren kann. Die typische Verwendung besteht darin, einen Wert mit der statischen Typ -Schnittstelle {} zu nutzen und seine dynamischen Typinformationen durch Aufrufen von TypeOF zu extrahieren, wodurch ein Objekt mit Schnittstellentyp zurückgegeben wird.
OS/EXEC : Das Betriebssystem/EXEC -Paket führt externe Befehle aus.
Go hat Zeiger, aber keine Zeiger Arthmus, daher verhalten sie eher wie Referenzen als wie Zeiger, die Sie vielleicht aus C kennen.
var p * int
p ++this .Zeiger sind nützlich. Denken Sie daran, dass die Variablen, wenn Sie eine Funktion in Go aufrufen, passig . Für die Effizienz und die Möglichkeit, einen übergebenen Wert in Funktionen zu ändern, haben wir Zeiger.
Zeigertyp ( * Typ) & Adresse (&) Operatoren *: Wenn eine Variable var x int deklariert wird, gibt der Ausdruck &x ("Adresse von x") einen Zeiger auf eine Ganzzahlvariable (ein Wert vom Typ * int ). Wenn dieser Wert p genannt wird, sagen wir " p zeigt auf x " oder äquivalent " p enthält die Adresse von x ". Die Variable, zu der p -Punkte geschrieben sind *p . Der Ausdruck *p ergibt den Wert dieser Variablen, ein int , aber da *p eine Variable bezeichnet, kann er auch auf der linken Seite einer Zuordnung erscheinen. In diesem Fall aktualisiert die Zuordnung die Variable. Referenz hier
x := 1
p := & x // p, of type *int, points to x
fmt . Println ( * p ) // "1"
* p = 2 // equivalent to x = 2
fmt . Println ( x ) // "2"Alle neu deklarierten Variablen werden ihr Nullwert zugewiesen und die Hinweise sind nicht anders. Ein neu deklarierter Zeiger oder nur ein Zeiger, der auf nichts verweist, hat einen Nullwert.
var p * int // declare a pointer
fmt . Printf ( "%v" , p )
var i int
p = & i // Make p point to i
fmt . Printf ( "%v" , p ) // Print somthing like 0x7ff96b81c000a // Go program to illustrate the
// concept of the Pointer to Pointer
package main
import "fmt"
// Main Function
func main () {
// taking a variable
// of integer type
var V int = 100
// taking a pointer
// of integer type
var pt1 * int = & V
// taking pointer to
// pointer to pt1
// storing the address
// of pt1 into pt2
var pt2 * * int = & pt1
fmt . Println ( "The Value of Variable V is = " , V )
fmt . Println ( "Address of variable V is = " , & V )
fmt . Println ( "The Value of pt1 is = " , pt1 )
fmt . Println ( "Address of pt1 is = " , & pt1 )
fmt . Println ( "The value of pt2 is = " , pt2 )
// Dereferencing the
// pointer to pointer
fmt . Println ( "Value at the address of pt2 is or *pt2 = " , * pt2 )
// double pointer will give the value of variable V
fmt . Println ( "*(Value at the address of pt2 is) or **pt2 = " , * * pt2 )
}
// The Value of Variable V is = 100
// Address of variable V is = 0x414020
// The Value of pt1 is = 0x414020
// Address of pt1 is = 0x40c128
// The value of pt2 is = 0x40c128
// Value at the address of pt2 is or *pt2 = 0x414020
// *(Value at the address of pt2 is) or **pt2 = 100Go hat auch Müllsammlung.
Die Erinnerung zuzuweisen, hat 2 Primitive, new & make .
Neue Zuordnung; initialisieren .
Konstrukteure & Compiste Literale
// A lot of boiler plate
func NewFile ( fd int , name string ) * File {
if fd < 0 {
return nil
}
f := new ( File )
f . fd = fd
f . name = name
f . dirinfo = nil
f . nepipe = 0
return f
}
// Using a composite literal
func NewFile ( fd int , name string ) * File {
if fd < 0 {
return nil
}
f := File { fd , name , nil . 0 }
return & f // Return the address of a local variable. The storage associated with the variable survives after the function returns.
// return &File{fd, name, nil, 0}
// return &File{fd: fd, name: name}
} Wenn ein zusammengesetzter Literal überhaupt keine Felder enthält, schafft es einen Nullwert für den Typ. Der Ausdruck new(File) & &File{} sind äquivalent.
Composite Literal kann auch für Arrays, Scheiben und Karten erstellt werden, wobei die Feldbezeichnungen Indizes oder Kartenschlüssel sind.
ar := [ ... ] string { Enone : "no error" , Einval : "invalid argument" }
sl := [] string { Enone : "no error" , Einval : "invalid argument" }
ma := map [ int ] string { Enone : "no error" , Einval : "invalid argument" } /* defining_own_type.go */
package main
import "fmt"
type NameAge struct {
name string // both non exported fiedls
age int
}
func main () {
a := new ( NameAge )
a . name = "Kien"
a . age = 25
fmt . Printf ( "%v n " , a ) // &{Kien, 25}
} struct {
x , y int
A * [] int
F func ()
}Methoden:
func doSomething1 ( n1 * NameAge , n2 int ) { /* */ }
// method call
var n * NameAge
n . doSomething1 ( 2 ) func ( n1 * NameAge ) doSomething2 ( n2 int ) { /* */ }HINWEIS : Wenn X adressierbar ist und die Methode von methode von m, xm () enthält, ist eine Abkürzung für (& x) .m ().
// A mutex is a data type with two methods, Lock & Unlock
type Mutex struct { /* Mutex fields */ }
func ( m * Mutex ) Lock () { /* Lock impl */ }
func ( m * Mutext ) Unlock { /* Unlock impl */ }
// NewMutex is equal to Mutex, but it does not have any of the methods of Mutex.
type NewMutex Mutex
// PrintableMutex hash inherited the method set from Mutex, contains the methods
// Lock & Unlock bound to its anonymous field Mutex
type PrintableMutex struct { Mutex } FROM b []byte i []int r []rune s string f float32 i int
TO
[]byte . []byte(s)
[]int . []int(s)
[]rune []rune(s)
string string(b) string(i) string(r) .
float32 . float32(i)
int int(f) .
string bis zu einem Stück Bytes oder Runen mystring := "hello this is string"
byteslice := [] byte ( mystring )
runeslice := [] rune ( string ) b := [] byte { 'h' , 'e' , 'l' , 'l' , 'o' } // Composite literal
s := string ( b )
i := [] rune ( 26 , 9 , 1994 )
r := string ( i )Für numerische Werte:
uint8(int) .int(float32) . Dies verwaltet den Bruchteil vom schwimmenden Punktwert.float32(int)Benutzerdefinierte Typen und Konvertierungen
type foo struct { int } // Anonymous struct field
type bar foo // bar is an alias for foo
var b bar = bar { 1 } // Declare `b` to be a `bar`
var f foo = b // Assign `b` to `f` --> Cannot use b (type bar) as type foo in assignment
var f foo = foo ( b ) // OK! /* a struct type S with 1 field, 2 methods */
type S struct { i int }
func ( p * S ) Get () int { return p . i }
func ( p * S ) Put ( v int ) { p . i = v }
/* an interface type */
type I interface {
Get () int
Put () int
}
/* S is a valid implementation for interface I */ func f ( p I ) {
fmt . Println ( p . Get ())
p . Put ( 1 )
}
var s S
/* Because S implements I, we can call the
function f passing in a pointer to a value
of type S */
/* The reason we need to take the address of s,
rather than a value of type S, is because
we defined the methods on s to operae on pointers */
f ( & s )Die Tatsache, dass Sie nicht erklären müssen, ob ein Typ eine Schnittstelle implementiert oder nicht, bedeutet, dass Go eine Form der Ententypisierung implementiert. Dies ist keine reine Enten -Tipping, da nach Möglichkeit das GO -Komplizierter statisch prüft, ob der Typ die Inerface implementiert. GO hat jedoch einen rein dynamischen Aspekt, in dem Sie von einer Schnittstelle zur anderen konvertieren können. Im allgemeinen Fall wird diese Konvertierung zur Laufzeit überprüft. Wenn die Konvertierung ungültig ist - wenn der Typ des im vorhandenen Schnittstellenwert gespeicherten Wertes die Schnittstelle, in die er konvertiert wird, nicht erfüllt -, schlägt das Programm mit einem Laufzeitfehler fehl.
package main
import "fmt"
type Duck interface {
Quack ()
}
type Donald struct {
}
func ( d Donald ) Quack () {
fmt . Println ( "quack quack!" )
}
type Daisy struct {
}
func ( d Daisy ) Quack () {
fmt . Println ( "-quack -quack" )
}
func sayQuack ( duck Duck ) {
duck . Quack ()
}
type Dog struct {
}
func ( d Dog ) Bark () {
fmt . Println ( "go go" )
}
func main () {
donald := Donald {}
sayQuack ( donald ) // quack
daisy := Daisy {}
sayQuack ( daisy ) // --quack
dog := Dog ()
sayQuack ( dog ) // compile error - cannot use dog (type Dog) as type Duck
} Mit den Schnittstellen von Go können Sie duck typing verwenden, wie Sie es in einer rein dynamischen Sprache wie Python tun würden, aber dennoch haben der Compiler offensichtliche Fehler wie das Übergeben eines int , bei dem ein Objekt mit einer Read erwartet wurde oder wie die Read mit der falschen Anzahl von Argumenten aufgerufen wurde.
type R struct { i int }
func ( p * R ) Get () int { return p . i }
func ( p * R ) Put ( v int ) { p . i = v }
func f ( p I ) {
switch t := p .( type ) {
case * S :
case * R :
default :
}
} func g ( something interface {}) int {
return something .( I ). Get ()
}.(I) ist eine Typbehauptung, die something in eine Schnittstelle vom Typ I umwandelt. Wenn wir den Typ haben, den wir auf die Get() -Funktion aufrufen können. s = new ( S )
fmt . Println ( g ( s ))Methoden sind Funktionen, die einen Empfänger haben.
Sie können Methoden auf jedem Typ definieren (außer bei nicht-lokalen Typen, dies umfasst integrierte Typen: Der Typ- int kann keine Methoden haben).
Methoden auf Schnittstellentypen
Nach Konvention werden Ein -Methoden -Schnittstellen vom Methodamen sowie dem -er -Suffix: Leser, Schriftsteller, Formatierer, ...
Empfänger der Zeiger- und Nicht-Punkte-Methoden.
func ( s * MyStruct ) pointerMethod () {} // method on pointer
func ( s MyStruct ) valueMethod () {} // method on value package main
import "fmt"
type Mutatable struct {
a int
b int
}
func ( m Mutatable ) StayTheSame () {
m . a = 5
m . b = 7
}
func ( m * Mutatable ) Mutate () {
m . a = 5
m . b = 7
}
func main () {
m := & Mutatable { 0 , 0 }
fmt . Println ( m )
m . StayTheSame ()
fmt . Println ( m )
m . Mutate ()
fmt . Println ( m )
}struct , es ist viel billiger, einen Zeigerempfänger zu verwenden.struct ist ein Wertempfänger sehr günstig. Wenn die Semantik der Methoden einen Zeiger erfordert, ist ein Wertempfänger effizient und klar. package main
import "fmt"
func do ( i interface {}) {
switch v := i .( type ) {
case int :
fmt . Printf ( "Twice %v is %v n " , v , v * 2 )
case string :
fmt . Printf ( "%q is %v bytes long n " , v , len ( v ))
default :
fmt . Printf ( "I don't know about type %T! n " , v )
}
}
func main () {
do ( 21 )
do ( "hello" )
do ( true )
}
// Twice 21 is 42
// "hello" is 5 bytes long
// I don't know about type bool! ready ( "Tea" , 2 ) // Normal function call
go ready ( "Tea" , 2 ) // .. Bum! Here is goroutine
/* X ready example */
package main
import (
"fmt"
"time"
)
func ready ( w string , sec int ) {
time . Sleep ( time . Duration ( sec ) * time . Second )
fmt . Println ( w , "is ready!" )
}
func main () {
go ready ( "Tea" , 2 ) // Tea is ready - After 2 second (3)
go ready ( "Coffee" , 1 ) // Coffee is ready - After 1 second (2)
fmt . Println ( "I'm waiting" ) // Right away (1)
// If did not wait for the goroutines, the program would be terminated
// immediately & any running goroutines would die with it!
time . Sleep ( 5 * time . Second )
} /* Define a channel, we must also define the type of
the values we can send on the channel */
ci := make ( chan int )
cs := make ( chan string )
cf := make ( chan interface {})
ci <- 1 // Send the integer 1 to the channel ci
<- ci // Receive an integer from the channel ci
i := <- ci // Receive from the channel ci & store it in i package main
import (
"fmt"
"time"
)
var c chan int
func ready ( w string , sec int ) {
time . Sleep ( time . Duration ( sec ) * time . Second )
fmt . Println ( w , "is ready!" )
c <- 1
}
func main () {
c = make ( chan int )
go ready ( "Tea" , 2 )
go ready ( "Coffee" , 1 )
fmt . Println ( "I'm waiting" )
<- c // Wait until we receive a value from the channel
<- c
}Gepufferter Kanal:
Der gepufferte Kanal hat Kapazität.
Der gepufferte Kanal wird verwendet, um eine asynchrone Gemeinschaft durchzuführen.
Ein gepufferter Kanal hat keine solche Garantie.
Ein Empfang blockiert nur, wenn der Kanal keinen Wert gibt, um zu empfangen.
Ein Send blockiert nur, wenn kein Puffer verfügbar ist, um den gesendeten Wert zu platzieren.
Abgelöster Kanal:
Der abgelöste Kanal hat keine Kapazität und verlangt daher, dass beide Goroutines bereit sind, einen Austausch vorzunehmen.
Der geliebte Kanal wird verwendet, um eine synchrone Kommunikation zwischen Goroutinen durchzuführen. Der ungereinte Kanal bietet eine Garantie dafür, dass ein Austausch zwischen 2 Goroutinen im Moment durchgeführt wird, in dem der Versand und die Empfang stattfinden.
Die Synchronisation ist für die Wechselwirkung zwischen Send und Empfang auf dem Kanal von grundlegender Bedeutung.
unbuffered := make ( chan int ) // Unbuffered channel of integer type
buffered := make ( chan int , 10 ) // Buffered channel of integer typeselect . L: for {
select {
case <- c :
i ++
if i > 1 {
break L
}
}
} package main
import "fmt"
func fibonacci ( c , quit chan int ) {
x , y := 0 , 1
for {
select {
case c <- x :
x , y = y , x + y
case <- quit :
fmt . Println ( "quit" )
return
}
}
}
func main () {
c := make ( chan int )
quit := make ( chan int )
go func () {
for i := 0 ; i < 10 ; i ++ {
fmt . Println ( <- c )
}
quit <- 0
}()
fibonacci ( c , quit )
}
// 2
// 3
// 5
// 8
// 13
// 21
// 34
// quit // Default selection
// The default case in a select is run if no other case is ready.
// Use a default case to try a send or receive without blocking:
// select {
// case i := <-c:
// // use i
// default:
// // receiving from c would block
// }
package main
import (
"fmt"
"time"
)
func main () {
tick := time . Tick ( 100 * time . Millisecond )
boom := time . After ( 500 * time . Millisecond )
for {
select {
case <- tick :
fmt . Println ( "tick." )
case <- boom :
fmt . Println ( "BOOM!" )
return
default :
fmt . Println ( " ." )
time . Sleep ( 50 * time . Millisecond )
}
}
}Während unsere Goroutinen gleichzeitig lief, liefen sie nicht parallel! (Noch einmal Zeit, stellen Sie sicher, dass Sie wissen, dass die Parallelität nicht Parralel ist!)
Mit runtime.GOMAXPROCS(n) oder einer Umgebungsvariablen GOMAXPROCS können Sie die Anzahl der parallelen Goroutinen festlegen.
Aus Version 1.5 und oben stand GOMAXPROCS standardmäßig mit der Anzahl der CPU -Kerne.
ch := make ( chan type , value )
// if value == 0 -> unbuffered
// if value > 0 -> buffer value elements x , ok = <- ch
/ * Where ok is set to True the channel is not closed & we 'v e read something
Otherwise ok is set to False . In that case the channel was closed & the value
received is a zero value of the channel 's type .io.Reader & io.Writer .io.Reader ist eine wichtige Schnittstelle in der Sprache. Viele (wenn nicht alle) Funktionen, die von etwas lesen müssen, nehmen Sie einen io.Reader als Eingabe.io.Writer hat die Write .io.Reader oder io.Writer -Schnittstelle erfüllen, kann die gesamte Standard -GO -Bibliothek für diesen Typ verwendet werden .os.Args .flag -Paket verfügt über eine komplexere Oberfläche und bietet auch eine Möglichkeit, Flags zu analysieren.os/exec -Paket hat Funktionen, um externe Befehle auszuführen, und ist die wichtigste Möglichkeit, Befehle aus dem Program aus dem GO -Programm auszuführen. import "os/exec"
cmd := exec . Command ( "/bin/ls" , "-l" )
// Just run without doing anything with the returned data
err := cmd . Run ()
// Capturing the standard output
buf , err := cmd . Output () // buf is byte slicenet .Dial . Wenn Sie in ein Remote -System Dial , gibt die Funktion einen Conn -Schnittstellen -Typ zurück, mit dem Informationen gesendet und empfangen werden können. Die Funktion Dial ordentlich die Netzwerkfamilie und den Transport ab. conn , e := Dial ( "tcp" , "192.0.32.10:80" )
conn , e := Dial ( "udp" , "192.0.32.10:80" )
conn , e := Dial ( "tcp" , "[2620:0:2d0:200::10]:80" )Go 1.11 enthält vorläufige Unterstützung für Module, das neue Abhängigkeitsmanagementsystem von Go, das die Informationen zur Abhängigkeit von Abhängigkeiten explizit und einfacher zu verwalten macht.
go.mod -Datei im Stammverzeichnis des Baumes definiert. Der Modulquellcode kann sich außerhalb von GOPath befinden. Es gibt vier Richtlinien: module , require , replace , exclude .go.mod require abgedeckt ist, werden die meisten GO -Befehle wie "Go Build" und "Go Test" automatisch das richtige Modul nachschlagen und die höchste Version dieser neuen direkten Abhängigkeit Ihres Moduls go.mod als require hinzufügen. Wenn Ihr neuer Import beispielsweise der Abhängigkeit m entspricht, deren neueste Version v1.2.3 ist, wird go.mod Ihres Moduls an erfordern, require M v1.2.3 , was zeigt, dass das Modul M eine Abhängigkeit mit zulässigem Version> = v1.2.3 ist (und <v2, da V2 mit V1 inkompatibel ist).v1.2.3 )./vN at the end of the module paths used in go.mod files (eg, module github.com/my/mod/v2 , require github.com/my/mod/v2 v2.0.0 ) & in the package import path (eg, import "github.com/my/mod/v2/mypkg" ).go.mod , provides the directory is outside $GOPATH/src . (Inside $GOPATH/src , for compatibility, the go command still runs in the old GOPATH mode, even if a go.mod is found) # Create a directory outside of your GOPATH:
$ mkdir -p /tmp/scratchpad/hello
$ cd /tmp/scratchpad/hello
# Initialize a new module:
$ go mod init github.com/you/hello
go: creating new go.mod: module github.com/you/hello
# Write your code
$ cat << EOF > hello.go
package main
import (
"fmt"
"rsc.io/quote"
)
func main() {
fmt.Println(quote.Hello())
}
EOF
# Introduce `go mod tidy`
# Tidy makes sure go.mod matches the source code in the module.
# It adds any missing modules necessary to build the current module's
# packages and dependencies, and it removes unused modules that
# don't provide any relevant packages. It also adds any missing entries
# to go.sum and removes any unnecessary ones
$ go mod tidy t/s/hello ﳑ
go: finding module for package rsc.io/quote
go: downloading rsc.io/quote v1.5.2
go: found rsc.io/quote in rsc.io/quote v1.5.2
go: downloading rsc.io/sampler v1.3.0
go: downloading golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c
$ cat go.mod
module github.com/you/hello
require rsc.io/quote v1.5.2
# Add a new dependency often brings in other indirect dependencies too
# List the current module and all its dependencies
$ go list -m all
github.com/you/hello
golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c
rsc.io/quote v1.5.2
rsc.io/sampler v1.3.0
# In addition to go.mod, there is a go.sum file containing the expected
# cryptographic hashes of the content of specific module versions
$ cat go.sum t/s/hello ﳑ
golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c h1:qgOY6WgZOaTkIIMiVjBQcw93ERBE4m30iBm00nkL0i8=
golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
rsc.io/quote v1.5.2 h1:w5fcysjrx7yqtD/aO+QwRjYZOKnaM9Uh2b40tElTs3Y=
rsc.io/quote v1.5.2/go.mod h1:LzX7hefJvL54yjefDEDHNONDjII0t9xZLPXsUe+TKr0=
rsc.io/sampler v1.3.0 h1:7uVkIFmeBqHfdjD+gZwtXXI+RODJ2Wc4O7MPEh/QiW4=
rsc.io/sampler v1.3.0/go.mod h1:T1hPZKmBbMNahiBKFy5HrXp6adAjACjK9JXDnKaTXpA=
# Build & run
$ go build
$ ./hello
Hello, world. # From the output of go list -m all, we're using an untagged version of golang.org/x/text
# Let's upgrade to the latest tagged version
$ go get golang.org/x/text t/s/hello ﳑ
go: downloading golang.org/x/text v0.7.0
go: upgraded golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c = > v0.7.0
$ cat go.mod t/s/hello ﳑ
module github.com/you/hello
go 1.19
require rsc.io/quote v1.5.2
require (
golang.org/x/text v0.7.0 // indirect
rsc.io/sampler v1.3.0 // indirect
)
$ go list -m all t/s/hello ﳑ
github.com/you/hello
golang.org/x/mod v0.6.0-dev.0.20220419223038-86c51ed26bb4
golang.org/x/sys v0.0.0-20220722155257-8c9f86f7a55f
golang.org/x/text v0.7.0
golang.org/x/tools v0.1.12
rsc.io/quote v1.5.2
rsc.io/sampler v1.3.0go mod tidy and Go does the rest.go tool provides go mod vendor command.go mod vendor command constructs a directory named vendor in the main module's root directory that contains copies of all packages needed to support builds and tests of packages in the main modules.go mod vendor also creates the file vendor/modules.txt that contains a list of vendored packages and the module versions they were copied from.vendor to your Version Control System, then copy this around. $ go mod vendor
# Main module's directory structure
$ tree -L 3
├── go.mod
├── go.sum
├── hello.go
└── vendor
├── golang.org
│ └── x
├── modules.txt
└── rsc.io
├── quote
└── samplergo tool defaults to downloading modules from the public Go module mirror: https://proxy.golang.org and also defaults to validating downloaded modules (regardless of source) against the public Go checksum database at https://sum.golang.org. export GOPROXY=https://goproxy.io,directgo command defaults to downloading modules from the public Go module mirror, therefore if you have private code, you most likely should configure the GOPRIVATE setting (such as go env -w GOPRIVATE=*.corp.com,github.com/secret/repo ), or the more fine-grained variants GONOPROXY or GONOSUMDB that support less frequent use cases. See the documentation for more details.go.work . The dependencies in this file can span multiple modules and anything declared in the go.work file will override dependencies in the module's go.mod .go.work file that specifies relative paths to the module directories of each the modules in the workspace. When no go.work file exists, the workspace consists of the single module containing the current directory.go.work files are defined in exactly the same way as for go.mod files. go 1.18
use . / my / first / thing
use . / my / second / thing
// or
// use (
// ./my/first/thing
// ./my/second/thing
// )
replace example . com / bad / thing v1 .4 .5 = > example . com / good / thing v1 .4 .5$ mkdir workspace
$ cd workspace
# Create hello module
$ mkdir hello
$ cd hello
$ go mod init eaxmple.com/hello
go: creating new go.mod: module example.com/hello
$ cat << EOF > hello.go
package main
import (
"fmt"
"golang.org/x/example/stringutil"
)
func main() {
fmt.Println(stringutil.Reverse("Hello"))
}
EOF
$ go mod tidy
go: finding module for package golang.org/x/example/stringutil
go: found golang.org/x/example/stringutil in golang.org/x/example v0.0.0-20220412213650-2e68773dfca0
$ go run example.com/hello
olleH
# Create the workspace
$ cd ../
$ go work init ./hello
$ tree
.
├── go.work
└── hello
├── go.mod
├── go.sum
└── hello.go
1 directory, 4 files
# Go command includes all the modules in the workspace as main modules. This allow us to refer to a package in the module
# even outside the module.
$ go run example.com/hello
olleH
# Download and modify the golang.org/x/example module
$ git clone https://go.googlesource.com/example
Cloning into ' example ' ...
remote: Total 165 (delta 27), reused 165 (delta 27)
Receiving objects: 100% (165/165), 434.18 KiB | 1022.00 KiB/s, done.
Resolving deltas: 100% (27/27), done.
# Add module to the workspace
$ go work use ./example
$ tree -L 1
.
├── example
├── go.work
└── hello
2 directories, 1 file
$ cat go.work
go 1.20
use (
./example
./hello
)
$ cd example/stringutil
# Create a new file
$ cat << EOF > toupper.go
package stringutil
import "unicode"
// ToUpper uppercases all the runes in its argument string.
func ToUpper(s string) string {
r := []rune(s)
for i := range r {
r[i] = unicode.ToUpper(r[i])
}
return string(r)
}
EOF
# Modify hello program
$ cd ../../hello
$ cat << EOF > hello.go
package main
import (
"fmt"
"golang.org/x/example/stringutil"
)
func main() {
fmt.Println(stringutil.ToUpper("Hello"))
}
EOF
$ cd ..
# Go command finds the example.com/hello module specified in the command line
# in the hello directory specified by the go.work file, and similiarly
# resolves the golang.org/x/example import using the go.work file.
$ go run example.com/hello
HELLOSource: https://go.dev/doc/modules/layout
Go projects can include packages, command-line programs or a combination of the two. This guide is organized by project type.
NOTE : throughout this document, file/package names are entirely arbitrary
project-root-directory/
go.mod
modname.go
modname_test.go
auth.go
auth_test.go
hash.go
hash_test.gomodname.go declares the package with: package modname
// ... package code here project-root-directory/
go.mod
auth.go
auth_test.go
client.go
main.gomain.go file contains func main , but this is just a convention. The “main” file can also be called modname.go (for an appropriate value of modname) or anything else. internal ; this prevents other modules from depending on packages we don't necessarily want to expose and support for external uses. Since other projects cannot import code from our internal directory, we're free to refactor its API and generally move things around without breaking external users. The project structure for a package is thus: project-root-directory/
internal/
auth/
auth.go
auth_test.go
hash/
hash.go
hash_test.go
go.mod
modname.go
modname_test.goproject-root-directory/
go.mod
modname.go
modname_test.go
auth/
auth.go
auth_test.go
token/
token.go
token_test.go
hash/
hash.go
internal/
trace/
trace.go module github . com / someuser / modname project-root-directory/
go.mod
internal/
... shared internal packages
prog1/
main.go
prog2/
main.gomain . A top-level internal directory can contain shared packages used by all commands in the repository.cmd directory; while this isn't strictly necessary in a repository that consists only of commands, it's very useful in a mixed repository that has both commands and importable packages, as we will discuss next. project-root-directory/
go.mod
modname.go
modname_test.go
auth/
auth.go
auth_test.go
internal/
... internal packages
cmd/
prog1/
main.go
prog2/
main.gointernal directory. Moreover, since the project is likely to have many other directories with non-Go files, it's a good idea to keep all Go commands together in a cmd directory: project-root-directory/
go.mod
internal/
auth/
...
metrics/
...
model/
...
cmd/
api-server/
main.go
metrics-analyzer/
main.go
...
... the project ' s other directories with non-Go codeGo models data input and output as a stream that flows from sources to targets. Data sources, such as files, network connections, or even some in-memory objects , can be modeled as streams of bytes from which data can be read or written to.
The most common usage of the fmt package is for writting to standard output and reading from standard input.
type metalloid struct {
name string
number int32
weight float64
}
func main () {
var metalloids = [] metalloid {
{ "Boron" , 5 , 10.81 },
...
{ "Polonium" , 84 , 209.0 },
}
file , _ := os . Create ( "./metalloids.txt" )
defer file . Close ()
for _ , m := range metalloids {
fmt . Fprintf (
file ,
"%-10s %-10d %-10.3f n " ,
m . name , m . number , m . weight ,
)
}
} The bufio package offers several functions to do buffered writing of IO streams using an `io.Writer interface.
In bytes package offers common primitives to achieve streaming IO on blocks of bytes stored in memory, represented by the bytes.Buffer byte. Since the bytes.Buffer type implements both io.Reader and io.Writer interfaces it is a great option to stream data into or out of memory using streaming IO primitives.
package main
import (
"encoding/json"
"fmt"
)
type Measurement struct {
Height int
Weight int
}
type Person struct {
Name string
Age int
Measurement Measurement // Nested object
}
func main () {
bob := & Person {
Name : "Bob" ,
Age : 20 ,
}
bobRaw , _ := json . Marshal ( bob )
fmt . Println ( string ( bobRaw ))
// Raw data without Measurement field
aliceRaw := [] byte ( `{"name": "Alice", "age": 23}` )
var alice Person
if err := json . Unmarshal ( aliceRaw , & alice ); err != nil {
panic ( err )
}
fmt . Printf ( "%+v n " , alice )
}
// {"Name":"Bob","Age":20,"Measurement":{"Height":190,"Weight":75}}
// {Name:Alice Age:23 Measurement:{Height:0 Weight:0}} package main
import (
"encoding/json"
"fmt"
)
type Measurement struct {
Height int `json:"height"`
Weight int `json:"weight"`
}
type Person struct {
Name string `json:"who"`
Age int `json:"how old"`
Measurement Measurement `json:"mm"`
}
func main () {
bob := & Person {
Name : "Bob" ,
Age : 20 ,
}
bobRaw , _ := json . Marshal ( bob )
fmt . Println ( string ( bobRaw ))
// Raw data without Measurement field
aliceRaw := [] byte ( `{"who": "Alice", "how old": 23, "mm": {"height": 150, "weight": 40}}` )
var alice Person
if err := json . Unmarshal ( aliceRaw , & alice ); err != nil {
panic ( err )
}
fmt . Printf ( "%+v" , alice )
}
// {"who":"Bob","how old":20,"mm":{"height":0,"weight":0}}
// {Name:Alice Age:23 Measurement:{Height:150 Weight:40}} package main
import (
"encoding/json"
"fmt"
)
func main () {
// Raw data without Measurement field
aliceRaw := [] byte ( `{"name": "Alice", "age": 23, "measurement": {"height": 150, "weight": 40}}` )
var alice map [ string ] interface {}
if err := json . Unmarshal ( aliceRaw , & alice ); err != nil {
panic ( err )
}
// the object stored in the "mesurement" key is also stored
// as a map[string]interface{} type, and its type is asserted
// the interface{} type
measurement := alice [ "measurement" ].( map [ string ] interface {})
fmt . Printf ( "%+v n " , alice )
fmt . Printf ( "%+v n " , measurement )
}
// map[age:23 measurement:map[height:150 weight:40] name:Alice]
// map[height:150 weight:40]omitempty property. package main
import (
"encoding/json"
"fmt"
)
type Measurement struct {
Height int `json:"height"`
Weight int `json:"weight"`
}
type Person struct {
Name string `json:"name"`
Age int `json:"age,omitempty"`
Measurement Measurement `json:"measurement"`
}
func main () {
bob := & Person {
Name : "Bob" ,
Measurement : Measurement {
Height : 190 ,
Weight : 75 ,
},
}
bobRaw , _ := json . Marshal ( bob )
fmt . Println ( string ( bobRaw ))
}
// Age field is ignored
// {"name":"Bob","measurement":{"height":190,"weight":75}}NOTE : There are a lot more helpful things in tips-notes. You may want to check it out.
Go Web Example
A basic HTTP server has a few key jobs to take care of:
package main
import (
"fmt"
"net/http"
)
func main () {
// Process dynamic request
http . HandleFunc ( "/" , func ( w http. ResponseWriter , r * http. Request ) {
fmt . Fprintf ( w , "Welcome to my website!" )
})
// Serving static assets
fs := http . FileServer ( http . Dir ( "static/" ))
http . Handle ( "/static/" , http . StripPrefix ( "/static/" , fs ))
// Accept connections
http . ListenAndServe ( ":80" , nil )
}A simple logging middleware.
// basic-middleware.go
package main
import (
"fmt"
"log"
"net/http"
)
func logging ( f http. HandlerFunc ) http. HandlerFunc {
return func ( w http. ResponseWriter , r * http. Request ) {
log . Println ( r . URL . Path )
f ( w , r )
}
}
func foo ( w http. ResponseWriter , r * http. Request ) {
fmt . Fprintln ( w , "foo" )
}
func bar ( w http. ResponseWriter , r * http. Request ) {
fmt . Fprintln ( w , "bar" )
}
func main () {
http . HandleFunc ( "/foo" , logging ( foo ))
http . HandleFunc ( "/bar" , logging ( bar ))
http . ListenAndServe ( ":8080" , nil )
} A middleware in itself simple takes a http.HandleFunc as one of its parameters, wraps it & returns a new http.HandlerFunc for the server to call.
Define a new type Middleware which makes it eventually easier to chain multiple middlewares together.
How a new middleware is created, boilerplate code:
func newMiddleware () Middleware {
// Create a new Middleware
middleware := func ( next http. HandlerFunc ) http. HandlerFunc {
// Define the http.HandlerFunc which is called by the server eventually
handler := func ( w http. ResponseWriter , r * http. Request ) {
// ... do middleware things
// Call the next middleware/handler in chain
next ( w , r )
}
// Return newly created handler
return handler
}
// Return newly created middleware
return middleware
} // advanced-middleware.go
package main
import (
"fmt"
"log"
"net/http"
"time"
)
type Middleware func (http. HandlerFunc ) http. HandlerFunc
// Logging logs all requests with its path & the time it took to process
func Logging () Middleware {
// Create a new Middleware
return func ( f http. HandlerFunc ) http. HandlerFunc {
// Define the http.HandlerFunc
return func ( w http. ResponseWriter , r * http. Request ) {
// Do middleware things
start := time . Now ()
defer func () { log . Println ( r . URL . Path , time . Since ( start )) }()
// Call the next middleware/handler in chain
f ( w , r )
}
}
}
// Method ensures that url can only be requested with a specific method, else returns a 400 Bad Request
func Method ( m string ) Middleware {
// Create a new Middleware
return func ( f http. HandlerFunc ) http. HandlerFunc {
// Define the http.HandlerFunc
return func ( w http. ResponseWriter , r * http. Request ) {
// Do middleware things
if r . Method != m {
http . Error ( w , http . StatusText ( http . StatusBadRequest ), http . StatusBadRequest )
return
}
// Call the next middleware/handler in chain
f ( w , r )
}
}
}
// Chain applies middlewares to a http.HandlerFunc
func Chain ( f http. HandlerFunc , middlewares ... Middleware ) http. HandlerFunc {
for _ , m := range middlewares {
f = m ( f )
}
return f
}
func Hello ( w http. ResponseWriter , r * http. Request ) {
fmt . Fprintln ( w , "hello world" )
}
func main () {
http . HandleFunc ( "/" , Chain ( Hello , Method ( "GET" ), Logging ()))
http . ListenAndServe ( ":8080" , nil )
}This section is mainly taken from: https://github.com/zalopay-oss/go-advanced/blob/master/ch3-rpc/ch3-01-rpc-go.md
// 13/rpc/rpcserver/main.go
package main
import (
"log"
"net"
"net/rpc"
)
type HelloService struct {}
// Only methods that satisfy these criteria will be made available for remote access; other methods will be ignored:
// - the method's type is exported.
// - the method is exported.
// - the method has two arguments, both exported (or builtin) types.
// - the method's second argument is a pointer.
// - the method has return type error.
// func (t *T) MethodName(argType T1, replyType *T2) error
func ( p * HelloService ) Hello ( request string , reply * string ) error {
* reply = "Hello " + request
return nil
}
func main () {
rpc . RegisterName ( "HelloService" , new ( HelloService ))
listener , err := net . Listen ( "tcp" , ":8081" )
if err != nil {
log . Fatal ( "Listen TCP error:" , err )
}
log . Println ( "Server is ready" )
for {
// accept connection
conn , err := listener . Accept ()
if err != nil {
log . Fatal ( "Accept error:" , err )
}
// serve client in another goroutine
go func () {
log . Println ( "Accept new client:" , conn . RemoteAddr ())
rpc . ServeConn ( conn )
}()
}
} // 13/rpc/rpcclient/main.go
package main
import (
"log"
"net/rpc"
)
func main () {
client , err := rpc . Dial ( "tcp" , "localhost:8081" )
if err != nil {
log . Fatal ( "Dialing error:" , err )
}
var reply string
if err = client . Call ( "HelloService.Hello" , "Kien" , & reply ); err != nil {
log . Fatal ( err )
}
log . Println ( reply )
} # Server
$ go run examples/13/rpc/rpcserver/main.go
2023/08/09 16:29:29 Server is ready
2023/08/09 16:29:30 Accept new client: 127.0.0.1:38728
2023/08/09 16:29:31 Accept new client: 127.0.0.1:38734
# Client
$ go run examples/13/rpc/rpcclient/main.go
2023/08/09 16:29:30 Hello Kien
$ go run examples/13/rpc/rpcclient/main.go
2023/08/09 16:29:31 Hello Kienprotoc : # Ubuntu
# https://grpc.io/docs/protoc-installation/#install-using-a-package-manager
$ sudo apt install -y protobuf-compiler
# install go plugin
$ go install github.com/golang/protobuf/protoc-gen-go@latesthello.proto : // version proto3
syntax = "proto3" ;
// generated package name
package main ;
message String {
string value = 1 ;
}Generate Golang source code:
gRPC is a high performance, open-source remote procedure call (RPC) framework that can run anywhere. It enables client and server applications to communicate transparently, and makes it easier to build connected systems.
The gRPC server implements the service interface and runs an RPC server to handle client calls to its service methods. On the client side, the client has a stub (referred to as just a client in some languages) that provides the same methods as the server.
This section is about the new packages be added.
unique packageSource: https://go.dev/blog/unique
var internPool map [ string ] string
// Intern returns a string that is equal to s but that may share storage with
// a string previously passed to Intern.
func Intern ( s string ) string {
pooled , ok := internPool [ s ]
if ! ok {
// Clone the string in case it's part of some much bigger string.
// This should be rare, if interning is being used well.
pooled = strings . Clone ( s )
internPool [ pooled ] = pooled
}
return pooled
}unique package introduces a function similar to Intern called Make. But it also differs from Intern in two important ways:Handle[T] has the property that two Handle[T] values are equal if and only if the values used to create them are equal. The comparison of two Handle[T] values is cheap: it comes down to a pointer comparison.net/netip package in the standard library, which interns values of type addrDetail , part of the netip.Addr structure.netip.Addr , while the fact that they're canonicalized mean netip.Addr values are more efficient to compare, since comparing zone names becaomes a simple pointer comparison. // Addr represents an IPv4 or IPv6 address (with or without a scoped
// addressing zone), similar to net.IP or net.IPAddr.
type Addr struct {
// Other irrelevant unexported fields...
// Details about the address, wrapped up together and canonicalized.
z unique. Handle [ addrDetail ]
}
// addrDetail indicates whether the address is IPv4 or IPv6, and if IPv6,
// specifies the zone name for the address.
type addrDetail struct {
isV6 bool // IPv4 is false, IPv6 is true.
zoneV6 string // May be != "" if IsV6 is true.
}
var z6noz = unique . Make ( addrDetail { isV6 : true })
// WithZone returns an IP that's the same as ip but with the provided
// zone. If zone is empty, the zone is removed. If ip is an IPv4
// address, WithZone is a no-op and returns ip unchanged.
func ( ip Addr ) WithZone ( zone string ) Addr {
if ! ip . Is6 () {
return ip
}
if zone == "" {
ip . z = z6noz
return ip
}
ip . z = unique . Make ( addrDetail { isV6 : true , zoneV6 : zone })
return ip
}There is the page lists a few resources for programmers interested in learning about the Golang.
Oops, actually you can refer to awesome-go for a complete list.