deep_gcns_torch
1.0.0
在這項工作中,我們提出了成功培訓非常深入GCN的新方法。我們從CNN借用概念,主要是殘留/密集的連接和擴張的捲積,並將其適應GCN體系結構。通過廣泛的實驗,我們顯示了這些深GCN框架的積極作用。
[Project] [Paper] [幻燈片] [TensorFlow代碼] [Pytorch代碼]

我們進行了廣泛的實驗,以顯示不同的組件(#layers,#filters,#nearest鄰居,擴張等)如何影響DeepGCNs 。我們還提供有關不同類型的深GCN(MRGCN,EDGECONV,GraphSage和Gin)的消融研究。

請查看examples文件夾中每個任務的Readme.md中的詳細信息。代碼,數據和驗證模型的所有信息都可以在此處找到。
examples/ogb_eff/ogbn_arxiv_dgl通過運行安裝環境:
source deepgcn_env_install.sh
.
├── misc # Misc images
├── utils # Common useful modules
├── gcn_lib # gcn library
│ ├── dense # gcn library for dense data (B x C x N x 1)
│ └── sparse # gcn library for sparse data (N x C)
├── eff_gcn_modules # modules for mem efficient gnns
├── examples
│ ├── modelnet_cls # code for point clouds classification on ModelNet40
│ ├── sem_seg_dense # code for point clouds semantic segmentation on S3DIS (data type: dense)
│ ├── sem_seg_sparse # code for point clouds semantic segmentation on S3DIS (data type: sparse)
│ ├── part_sem_seg # code for part segmentation on PartNet
│ ├── ppi # code for node classification on PPI dataset
│ └── ogb # code for node/graph property prediction on OGB datasets
│ └── ogb_eff # code for node/graph property prediction on OGB datasets with memory efficient GNNs
└── ...
如果您發現任何有用的話,請引用我們的論文
@InProceedings{li2019deepgcns,
title={DeepGCNs: Can GCNs Go as Deep as CNNs?},
author={Guohao Li and Matthias Müller and Ali Thabet and Bernard Ghanem},
booktitle={The IEEE International Conference on Computer Vision (ICCV)},
year={2019}
}
@article{li2021deepgcns_pami,
title={Deepgcns: Making gcns go as deep as cnns},
author={Li, Guohao and M{"u}ller, Matthias and Qian, Guocheng and Perez, Itzel Carolina Delgadillo and Abualshour, Abdulellah and Thabet, Ali Kassem and Ghanem, Bernard},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2021},
publisher={IEEE}
}
@misc{li2020deepergcn,
title={DeeperGCN: All You Need to Train Deeper GCNs},
author={Guohao Li and Chenxin Xiong and Ali Thabet and Bernard Ghanem},
year={2020},
eprint={2006.07739},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@InProceedings{li2021gnn1000,
title={Training Graph Neural Networks with 1000 layers},
author={Guohao Li and Matthias Müller and Bernard Ghanem and Vladlen Koltun},
booktitle={International Conference on Machine Learning (ICML)},
year={2021}
}
麻省理工學院許可證
有關更多信息,請聯繫Guocheng Qian Matthias Muller的Guohao Li。