En este trabajo, presentamos nuevas formas de entrenar con éxito GCN muy profundos. Tomamos prestados conceptos de CNN, principalmente conexiones residuales/densas y convoluciones dilatadas, y los adaptamos a las arquitecturas GCN. A través de experimentos extensos, mostramos el efecto positivo de estos marcos GCN profundos.
[Proyecto] [Paper] [Slides] [Código TensorFlow] [Código PyTorch]

Hacemos experimentos extensos para mostrar cómo los diferentes componentes (#Lapas, #filters, #nearest vecinos, dilatación, etc.) afectan DeepGCNs . También proporcionamos estudios de ablación sobre diferentes tipos de GCN profundos (MRGCN, EDGECONV, Graphsage y Gin).

Mire los detalles en Readme.md de cada tarea dentro de la carpeta examples . Allí se puede encontrar toda la información del código, los datos y los modelos previos a la detención.
examples/ogb_eff/ogbn_arxiv_dglInstalar Enviroment corriendo:
source deepgcn_env_install.sh
.
├── misc # Misc images
├── utils # Common useful modules
├── gcn_lib # gcn library
│ ├── dense # gcn library for dense data (B x C x N x 1)
│ └── sparse # gcn library for sparse data (N x C)
├── eff_gcn_modules # modules for mem efficient gnns
├── examples
│ ├── modelnet_cls # code for point clouds classification on ModelNet40
│ ├── sem_seg_dense # code for point clouds semantic segmentation on S3DIS (data type: dense)
│ ├── sem_seg_sparse # code for point clouds semantic segmentation on S3DIS (data type: sparse)
│ ├── part_sem_seg # code for part segmentation on PartNet
│ ├── ppi # code for node classification on PPI dataset
│ └── ogb # code for node/graph property prediction on OGB datasets
│ └── ogb_eff # code for node/graph property prediction on OGB datasets with memory efficient GNNs
└── ...
Por favor cita nuestro documento si encuentra algo útil,
@InProceedings{li2019deepgcns,
title={DeepGCNs: Can GCNs Go as Deep as CNNs?},
author={Guohao Li and Matthias Müller and Ali Thabet and Bernard Ghanem},
booktitle={The IEEE International Conference on Computer Vision (ICCV)},
year={2019}
}
@article{li2021deepgcns_pami,
title={Deepgcns: Making gcns go as deep as cnns},
author={Li, Guohao and M{"u}ller, Matthias and Qian, Guocheng and Perez, Itzel Carolina Delgadillo and Abualshour, Abdulellah and Thabet, Ali Kassem and Ghanem, Bernard},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2021},
publisher={IEEE}
}
@misc{li2020deepergcn,
title={DeeperGCN: All You Need to Train Deeper GCNs},
author={Guohao Li and Chenxin Xiong and Ali Thabet and Bernard Ghanem},
year={2020},
eprint={2006.07739},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@InProceedings{li2021gnn1000,
title={Training Graph Neural Networks with 1000 layers},
author={Guohao Li and Matthias Müller and Bernard Ghanem and Vladlen Koltun},
booktitle={International Conference on Machine Learning (ICML)},
year={2021}
}
Licencia de MIT
Para obtener más información, comuníquese con Guohao Li, Matthias Muller, Guocheng Qian.