braindecode
v0.8.1
BrainDecode是一种开源Python工具箱,用于用深度学习模型解码原始电生理大脑数据。它包括数据集图,数据预处理和可视化工具,以及用于分析脑电图,ECOG和MEG分析的几种深度学习体系结构和数据增强的实现。
对于想要与想要与神经生理数据一起工作的深度学习和深度学习研究人员合作的神经科学家。
pip install moabbpip install braindecode如果要安装最新开发版本的braindecode,请参阅贡献页面
文档在https://braindecode.org下在线,均以稳定版本和开发版本为单位。
可以在Braindecode GitHub上找到为图书馆贡献的指南:
https://github.com/braindecode/braindecode/blob/master/contributing.md
https://gitter.im/braindecodechat/community
如果您在科学出版物中使用此代码,请将我们引用为:
@article { HBM:HBM23730 ,
author = { Schirrmeister, Robin Tibor and Springenberg, Jost Tobias and Fiederer,
Lukas Dominique Josef and Glasstetter, Martin and Eggensperger, Katharina and Tangermann, Michael and
Hutter, Frank and Burgard, Wolfram and Ball, Tonio } ,
title = { Deep learning with convolutional neural networks for EEG decoding and visualization } ,
journal = { Human Brain Mapping } ,
issn = { 1097-0193 } ,
url = { http://dx.doi.org/10.1002/hbm.23730 } ,
doi = { 10.1002/hbm.23730 } ,
month = { aug } ,
year = { 2017 } ,
keywords = { electroencephalography, EEG analysis, machine learning, end-to-end learning, brain–machine interface,
brain–computer interface, model interpretability, brain mapping } ,
}以及BrainDecode使用的MNE-Python软件:
@article { 10.3389/fnins.2013.00267 ,
author = { Gramfort, Alexandre and Luessi, Martin and Larson, Eric and Engemann, Denis and Strohmeier, Daniel and Brodbeck, Christian and Goj, Roman and Jas, Mainak and Brooks, Teon and Parkkonen, Lauri and Hämäläinen, Matti } ,
title = { {MEG and EEG data analysis with MNE-Python} } ,
journal = { Frontiers in Neuroscience } ,
volume = { 7 } ,
pages = { 267 } ,
year = { 2013 } ,
url = { https://www.frontiersin.org/article/10.3389/fnins.2013.00267 } ,
doi = { 10.3389/fnins.2013.00267 } ,
issn = { 1662-453X } ,
}该项目主要根据BSD-3-CAREASE许可获得许可。
该存储库中的某些组件是根据创意共享归因于非商业4.0国际许可证的许可。
请参阅LICENSE和NOTICE文件以获取更多详细信息。