| nome | Articleapi | MP_ARTICUTAPI | Ws_articutapi |
|---|---|---|---|
| produto | Online / Docker | Docker | Docker |
| tecnologia | Solicitação http | Multiprocessamento | WebSocket |
| recurso | Simples e fácil de usar | Processamento em lote | Processamento instantâneo |
| Cenários aplicáveis | qualquer | Análise de texto | Chatbot |
| nome | Articleapi | MP_ARTICUTAPI | Ws_articutapi |
|---|---|---|---|
| tempo | 0,1252 segundos | 0,1206 segundos | 0,0677 segundos |
| Número de frases | Articleapi | MP_ARTICUTAPI | Ws_articutapi |
|---|---|---|---|
| método | Parse () | Bulk_parse (20) | Parse () |
| 1k | 155 segundos | 8 segundos | 18 segundos |
| 2k | 306 segundos | 14 segundos | 35 segundos |
| 3k | 455 segundos | 17 segundos | 43 segundos |
MP_ArticutAPI Usa o método BULK_PARSE (BULKSIZE = 20).WS_ArticutAPI usa o método parse ().pip3 install ArticutAPIConsulte o docs/index.html para descrição da função
from ArticutAPI import Articut
from pprint import pprint
username = "" #這裡填入您在 https://api.droidtown.co 使用的帳號 email。若使用空字串,則預設使用每小時 2000 字的公用額度。
apikey = "" #這裡填入您在 https://api.droidtown.co 登入後取得的 api Key。若使用空字串,則預設使用每小時 2000 字的公用額度。
articut = Articut(username, apikey)
inputSTR = "會被大家盯上,才證明你有實力。"
resultDICT = articut.parse(inputSTR)
pprint(resultDICT)
{"exec_time": 0.06723856925964355,
"level": "lv2",
"msg": "Success!",
"result_pos": ["<MODAL>會</MODAL><ACTION_lightVerb>被</ACTION_lightVerb><ENTITY_nouny>大家</ENTITY_nouny><ACTION_verb>盯上</ACTION_verb>",
",",
"<MODAL>才</MODAL><ACTION_verb>證明</ACTION_verb><ENTITY_pronoun>你</ENTITY_pronoun><ACTION_verb>有</ACTION_verb><ENTITY_noun>實力</ENTITY_noun>",
"。"],
"result_segmentation": "會/被/大家/盯上/,/才/證明/你/有/實力/。/",
"status": True,
"version": "v118",
"word_count_balance": 9985,
"product": "https://api.droidtown.co/product/",
"document": "https://api.droidtown.co/document/"
}
Você pode encontrar palavras que tenham significados completos de palavras como "substantivo", "verbo" ou "adjetivo" de acordo com suas necessidades.
inputSTR = "你計劃過地球人類補完計劃"
resultDICT = articut.parse(inputSTR, level="lv1")
pprint(resultDICT["result_pos"])
#列出所有的 content word.
contentWordLIST = articut.getContentWordLIST(resultDICT)
pprint(contentWordLIST)
#列出所有的 verb word. (動詞)
verbStemLIST = articut.getVerbStemLIST(resultDICT)
pprint(verbStemLIST)
#列出所有的 noun word. (名詞)
nounStemLIST = articut.getNounStemLIST(resultDICT)
pprint(nounStemLIST)
#列出所有的 location word. (地方名稱)
locationStemLIST = articut.getLocationStemLIST(resultDICT)
pprint(locationStemLIST)
#resultDICT["result_pos"]
["<ENTITY_pronoun>你</ENTITY_pronoun><ACTION_verb>計劃</ACTION_verb><ASPECT>過</ASPECT><LOCATION>地球</LOCATION><ENTITY_oov>人類</ENTITY_oov><ACTION_verb>補完</ACTION_verb><ENTITY_nounHead>計劃</ENTITY_nounHead>"]
#列出所有的 content word.
[[(47, 49, '計劃'), (117, 119, '人類'), (146, 147, '補'), (196, 198, '計劃')]]
#列出所有的 verb word. (動詞)
[[(47, 49, '計劃'), (146, 147, '補')]]
#列出所有的 noun word. (名詞)
[[(117, 119, '人類'), (196, 198, '計劃')]]
#列出所有的 location word. (地方名稱)
[[(91, 93, '地球')]]
resultDICT = articut.versions()
pprint(resultDICT)
{"msg": "Success!",
"status": True,
"versions": [{"level": ["lv1", "lv2"],
"release_date": "2019-04-25",
"version": "latest"},
{"level": ["lv1", "lv2"],
"release_date": "2019-04-25",
"version": "v118"},
{"level": ["lv1", "lv2"],
"release_date": "2019-04-24",
"version": "v117"},...
}
inputSTR = "小紅帽"
resultDICT = articut.parse(inputSTR, level="lv1")
pprint(resultDICT)
Verbo extremo verbo, adequado para NLU ou Máquina de uso automático de tradução. Apresente os resultados para subdividir cada elemento na frase o máximo possível.
{"exec_time": 0.04814624786376953,
"level": "lv1",
"msg": "Success!",
"result_pos": ["<MODIFIER>小</MODIFIER><MODIFIER_color>紅</MODIFIER_color><ENTITY_nounHead>帽</ENTITY_nounHead>"],
"result_segmentation": "小/紅/帽/",
"status": True,
"version": "v118",
"word_count_balance": 9997,...}
A fonologia da frase é adequada para análise de texto, cálculo do valor do recurso, extração de palavras -chave, etc. Os resultados da apresentação serão apresentados em uma menor unidade de significado.
{"exec_time": 0.04195523262023926,
"level": "lv2",
"msg": "Success!",
"result_pos": ["<ENTITY_nouny>小紅帽</ENTITY_nouny>"],
"result_segmentation": "小紅帽/",
"status": True,
"version": "v118",
"word_count_balance": 9997,...}
Porque o artigo lida apenas com "conhecimento da linguagem" e não "conhecimento da enciclopédia". Fornecemos a função do vocabulário de "personalização do usuário", que é usado no formato de dicionário, escreva você mesmo.
UserDefinedFile.json
{"雷姆":["小老婆"],
"艾蜜莉亞":["大老婆"],
"初音未來": ["初音", "只是個軟體"],
"李敏鎬": ["全民歐巴", "歐巴"]}
RUNARTICUT.PY
from ArticutAPI import Articut
from pprint import pprint
articut = Articut()
userDefined = "./UserDefinedFile.json"
inputSTR = "我的最愛是小老婆,不是初音未來。"
# 使用自定義詞典
resultDICT = articut.parse(inputSTR, userDefinedDictFILE=userDefined)
pprint(resultDICT)
# 未使用自定義詞典
resultDICT = articut.parse(inputSTR)
pprint(resultDICT)
# 使用自定義詞典
{"result_pos": ["<ENTITY_pronoun>我</ENTITY_pronoun><FUNC_inner>的</FUNC_inner><ACTION_verb>最愛</ACTION_verb><AUX>是</AUX><UserDefined>小老婆</UserDefined>",
",",
"<FUNC_negation>不</FUNC_negation><AUX>是</AUX><UserDefined>初音未來</UserDefined>",
"。"],
"result_segmentation": "我/的/最愛/是/小老婆/,/不/是/初音未來/。/",...}
# 未使用自定義詞典
{"result_pos": ["<ENTITY_pronoun>我</ENTITY_pronoun><FUNC_inner>的</FUNC_inner><ACTION_verb>最愛</ACTION_verb><AUX>是</AUX><ENTITY_nouny>小老婆</ENTITY_nouny>",
",",
"<FUNC_negation>不</FUNC_negation><AUX>是</AUX><ENTITY_nouny>初音</ENTITY_nouny><TIME_justtime>未來</TIME_justtime>",
"。"],
"result_segmentation": "我/的/最愛/是/小老婆/,/不/是/初音/未來/。/",...}
A plataforma aberta do governo contém "O Departamento de Turismo do Ministério dos Transportes coleta informações de turismo espacial divulgadas por várias agências governamentais". Artigo pode usar as informações nele e marcá -las como <wellwledge_place>
Carregar conteúdo (formato JSON)
{
"username": "[email protected]",
"api_key": "anapikeyfordocthatdoesnwork@all",
"input_str": "花蓮的原野牧場有一間餐廳",
"version": "v137",
"level": "lv1",
"opendata_place": true
}
Retornar conteúdo (formato JSON)
{
"exec_time": 0.013453006744384766,
"level": "lv1",
"msg": "Success!",
"result_pos": ["<LOCATION>花蓮</LOCATION><FUNC_inner>的</FUNC_inner><KNOWLEDGE_place>原野牧場</KNOWLEDGE_place><ACTION_verb>有</ACTION_verb><ENTITY_classifier>一間</ENTITY_classifier><ENTITY_noun>餐廳</ENTITY_noun>"],
"result_segmentation": "花蓮/的/原野牧場/有/一間/餐廳/",
"status": True,
"version": "v137",
"word_count_balance": 99987
}
Exemplo de uso: https://github.com/droidtown/articutapi/blob/master/articutapi.py#l624
Artigo de algoritmo: TexTrank: trazendo ordem para textos
Exemplo de uso: https://github.com/droidtown/articutapi/blob/master/articutapi.py#l629

Requisitos ambientais
Python 3.6.1
$ pip install graphene
$ pip install starlette
$ pip install jinja2
$ pip install uvicorn
Execute o artigographql.py para trazer o caminho do arquivo para o resultado de quebra de palavras de Articut e abrir o navegador para entrar no URL http://0.0.0.0:8000/
$ python ArticutGraphQL.py articutResult.json


Instale o módulo de grafeno
$ pip install graphene
inputSTR = "地址:宜蘭縣宜蘭市縣政北七路六段55巷1號2樓"
result = articut.parse(inputSTR)
with open("articutResult.json", "w", encoding="utf-8") as resultFile:
json.dump(result, resultFile, ensure_ascii=False)
graphQLResult = articut.graphQL.query(
filePath="articutResult.json",
query="""
{
meta {
lang
description
}
doc {
text
tokens {
text
pos_
tag_
isStop
isEntity
isVerb
isTime
isClause
isKnowledge
}
}
}""")
pprint(graphQLResult)

inputSTR = "劉克襄在本次活動當中,分享了台北中山北路一日遊路線。他表示當初自己領著柯文哲一同探索了雙連市場與中山捷運站的小吃與商圈,還有商圈內的文創商店與日系雜物店鋪,都令柯文哲留下深刻的印象。劉克襄也認為,雙連市場內的魯肉飯、圓仔湯與切仔麵,還有九條通的日式店家、居酒屋等特色,也能讓人感受到台北舊城區不一樣的魅力。"
result = articut.parse(inputSTR)
with open("articutResult.json", "w", encoding="utf-8") as resultFile:
json.dump(result, resultFile, ensure_ascii=False)
graphQLResult = articut.graphQL.query(
filePath="articutResult.json",
query="""
{
meta {
lang
description
}
doc {
text
ents {
persons {
text
pos_
tag_
}
}
}
}""")
pprint(graphQLResult)
