| nama | Articleapi | Mp_articutapi | Ws_articutapi |
|---|---|---|---|
| produk | Online / Docker | Buruh pelabuhan | Buruh pelabuhan |
| teknologi | Permintaan HTTP | Multiprosesing | Websocket |
| fitur | Sederhana dan mudah digunakan | Pemrosesan batch | Pemrosesan instan |
| Skenario yang berlaku | setiap | Analisis Teks | Chatbot |
| nama | Articleapi | Mp_articutapi | Ws_articutapi |
|---|---|---|---|
| waktu | 0,1252 detik | 0,1206 detik | 0,0677 detik |
| Jumlah kalimat | Articleapi | Mp_articutapi | Ws_articutapi |
|---|---|---|---|
| metode | parse () | bulk_parse (20) | parse () |
| 1k | 155 detik | 8 detik | 18 detik |
| 2k | 306 detik | 14 detik | 35 detik |
| 3K | 455 detik | 17 detik | 43 detik |
MP_ArticutAPI menggunakan metode bulk_parse (bulksize = 20).WS_ArticutAPI menggunakan metode parse ().pip3 install ArticutAPISilakan merujuk ke dokumen/index.html untuk deskripsi fungsi
from ArticutAPI import Articut
from pprint import pprint
username = "" #這裡填入您在 https://api.droidtown.co 使用的帳號 email。若使用空字串,則預設使用每小時 2000 字的公用額度。
apikey = "" #這裡填入您在 https://api.droidtown.co 登入後取得的 api Key。若使用空字串,則預設使用每小時 2000 字的公用額度。
articut = Articut(username, apikey)
inputSTR = "會被大家盯上,才證明你有實力。"
resultDICT = articut.parse(inputSTR)
pprint(resultDICT)
{"exec_time": 0.06723856925964355,
"level": "lv2",
"msg": "Success!",
"result_pos": ["<MODAL>會</MODAL><ACTION_lightVerb>被</ACTION_lightVerb><ENTITY_nouny>大家</ENTITY_nouny><ACTION_verb>盯上</ACTION_verb>",
",",
"<MODAL>才</MODAL><ACTION_verb>證明</ACTION_verb><ENTITY_pronoun>你</ENTITY_pronoun><ACTION_verb>有</ACTION_verb><ENTITY_noun>實力</ENTITY_noun>",
"。"],
"result_segmentation": "會/被/大家/盯上/,/才/證明/你/有/實力/。/",
"status": True,
"version": "v118",
"word_count_balance": 9985,
"product": "https://api.droidtown.co/product/",
"document": "https://api.droidtown.co/document/"
}
Anda dapat menemukan kata -kata yang memiliki makna kata -kata seperti "kata benda", "kata kerja" atau "kata sifat" sesuai dengan kebutuhan Anda.
inputSTR = "你計劃過地球人類補完計劃"
resultDICT = articut.parse(inputSTR, level="lv1")
pprint(resultDICT["result_pos"])
#列出所有的 content word.
contentWordLIST = articut.getContentWordLIST(resultDICT)
pprint(contentWordLIST)
#列出所有的 verb word. (動詞)
verbStemLIST = articut.getVerbStemLIST(resultDICT)
pprint(verbStemLIST)
#列出所有的 noun word. (名詞)
nounStemLIST = articut.getNounStemLIST(resultDICT)
pprint(nounStemLIST)
#列出所有的 location word. (地方名稱)
locationStemLIST = articut.getLocationStemLIST(resultDICT)
pprint(locationStemLIST)
#resultDICT["result_pos"]
["<ENTITY_pronoun>你</ENTITY_pronoun><ACTION_verb>計劃</ACTION_verb><ASPECT>過</ASPECT><LOCATION>地球</LOCATION><ENTITY_oov>人類</ENTITY_oov><ACTION_verb>補完</ACTION_verb><ENTITY_nounHead>計劃</ENTITY_nounHead>"]
#列出所有的 content word.
[[(47, 49, '計劃'), (117, 119, '人類'), (146, 147, '補'), (196, 198, '計劃')]]
#列出所有的 verb word. (動詞)
[[(47, 49, '計劃'), (146, 147, '補')]]
#列出所有的 noun word. (名詞)
[[(117, 119, '人類'), (196, 198, '計劃')]]
#列出所有的 location word. (地方名稱)
[[(91, 93, '地球')]]
resultDICT = articut.versions()
pprint(resultDICT)
{"msg": "Success!",
"status": True,
"versions": [{"level": ["lv1", "lv2"],
"release_date": "2019-04-25",
"version": "latest"},
{"level": ["lv1", "lv2"],
"release_date": "2019-04-25",
"version": "v118"},
{"level": ["lv1", "lv2"],
"release_date": "2019-04-24",
"version": "v117"},...
}
inputSTR = "小紅帽"
resultDICT = articut.parse(inputSTR, level="lv1")
pprint(resultDICT)
Kata kerja kata kerja ekstrem, cocok untuk penggunaan terjemahan otomatis NLU atau mesin. Sajikan hasil untuk membagi setiap elemen dalam kalimat sebanyak mungkin.
{"exec_time": 0.04814624786376953,
"level": "lv1",
"msg": "Success!",
"result_pos": ["<MODIFIER>小</MODIFIER><MODIFIER_color>紅</MODIFIER_color><ENTITY_nounHead>帽</ENTITY_nounHead>"],
"result_segmentation": "小/紅/帽/",
"status": True,
"version": "v118",
"word_count_balance": 9997,...}
Frasa fonologi cocok untuk analisis teks, perhitungan nilai fitur, ekstraksi kata kunci, dll. Hasil presentasi akan disajikan dalam unit makna terkecil.
{"exec_time": 0.04195523262023926,
"level": "lv2",
"msg": "Success!",
"result_pos": ["<ENTITY_nouny>小紅帽</ENTITY_nouny>"],
"result_segmentation": "小紅帽/",
"status": True,
"version": "v118",
"word_count_balance": 9997,...}
Karena artikel hanya membahas "pengetahuan bahasa" dan bukan "pengetahuan ensiklopedia". Kami menyediakan fungsi kosakata "kustomisasi pengguna", yang digunakan dalam format kamus, silakan tulis sendiri.
UserDefinedFile.json
{"雷姆":["小老婆"],
"艾蜜莉亞":["大老婆"],
"初音未來": ["初音", "只是個軟體"],
"李敏鎬": ["全民歐巴", "歐巴"]}
runarticut.py
from ArticutAPI import Articut
from pprint import pprint
articut = Articut()
userDefined = "./UserDefinedFile.json"
inputSTR = "我的最愛是小老婆,不是初音未來。"
# 使用自定義詞典
resultDICT = articut.parse(inputSTR, userDefinedDictFILE=userDefined)
pprint(resultDICT)
# 未使用自定義詞典
resultDICT = articut.parse(inputSTR)
pprint(resultDICT)
# 使用自定義詞典
{"result_pos": ["<ENTITY_pronoun>我</ENTITY_pronoun><FUNC_inner>的</FUNC_inner><ACTION_verb>最愛</ACTION_verb><AUX>是</AUX><UserDefined>小老婆</UserDefined>",
",",
"<FUNC_negation>不</FUNC_negation><AUX>是</AUX><UserDefined>初音未來</UserDefined>",
"。"],
"result_segmentation": "我/的/最愛/是/小老婆/,/不/是/初音未來/。/",...}
# 未使用自定義詞典
{"result_pos": ["<ENTITY_pronoun>我</ENTITY_pronoun><FUNC_inner>的</FUNC_inner><ACTION_verb>最愛</ACTION_verb><AUX>是</AUX><ENTITY_nouny>小老婆</ENTITY_nouny>",
",",
"<FUNC_negation>不</FUNC_negation><AUX>是</AUX><ENTITY_nouny>初音</ENTITY_nouny><TIME_justtime>未來</TIME_justtime>",
"。"],
"result_segmentation": "我/的/最愛/是/小老婆/,/不/是/初音/未來/。/",...}
Platform terbuka pemerintah berisi "Biro Pariwisata Kementerian Transportasi mengumpulkan informasi pariwisata spasial yang dirilis oleh berbagai lembaga pemerintah." Artikel dapat menggunakan informasi di dalamnya dan menandainya sebagai <lwellowing_place>
Unggah konten (format JSON)
{
"username": "[email protected]",
"api_key": "anapikeyfordocthatdoesnwork@all",
"input_str": "花蓮的原野牧場有一間餐廳",
"version": "v137",
"level": "lv1",
"opendata_place": true
}
Konten Pengembalian (format JSON)
{
"exec_time": 0.013453006744384766,
"level": "lv1",
"msg": "Success!",
"result_pos": ["<LOCATION>花蓮</LOCATION><FUNC_inner>的</FUNC_inner><KNOWLEDGE_place>原野牧場</KNOWLEDGE_place><ACTION_verb>有</ACTION_verb><ENTITY_classifier>一間</ENTITY_classifier><ENTITY_noun>餐廳</ENTITY_noun>"],
"result_segmentation": "花蓮/的/原野牧場/有/一間/餐廳/",
"status": True,
"version": "v137",
"word_count_balance": 99987
}
Contoh Penggunaan: https://github.com/droidtown/articutapi/blob/master/articutapi.py#l624
Kertas Algoritma: Textrank: Membawa pesanan ke dalam teks
Contoh Penggunaan: https://github.com/droidtown/articutapi/blob/master/articutapi.py#l629

Persyaratan lingkungan
Python 3.6.1
$ pip install graphene
$ pip install starlette
$ pip install jinja2
$ pip install uvicorn
Jalankan artikelgraphql.py untuk membawa jalur arsip ke hasil pemecahan kata Articut, dan buka browser untuk memasukkan URL http://0.0.0.0:8000/
$ python ArticutGraphQL.py articutResult.json


Instal Modul Graphene
$ pip install graphene
inputSTR = "地址:宜蘭縣宜蘭市縣政北七路六段55巷1號2樓"
result = articut.parse(inputSTR)
with open("articutResult.json", "w", encoding="utf-8") as resultFile:
json.dump(result, resultFile, ensure_ascii=False)
graphQLResult = articut.graphQL.query(
filePath="articutResult.json",
query="""
{
meta {
lang
description
}
doc {
text
tokens {
text
pos_
tag_
isStop
isEntity
isVerb
isTime
isClause
isKnowledge
}
}
}""")
pprint(graphQLResult)

inputSTR = "劉克襄在本次活動當中,分享了台北中山北路一日遊路線。他表示當初自己領著柯文哲一同探索了雙連市場與中山捷運站的小吃與商圈,還有商圈內的文創商店與日系雜物店鋪,都令柯文哲留下深刻的印象。劉克襄也認為,雙連市場內的魯肉飯、圓仔湯與切仔麵,還有九條通的日式店家、居酒屋等特色,也能讓人感受到台北舊城區不一樣的魅力。"
result = articut.parse(inputSTR)
with open("articutResult.json", "w", encoding="utf-8") as resultFile:
json.dump(result, resultFile, ensure_ascii=False)
graphQLResult = articut.graphQL.query(
filePath="articutResult.json",
query="""
{
meta {
lang
description
}
doc {
text
ents {
persons {
text
pos_
tag_
}
}
}
}""")
pprint(graphQLResult)
