Code pour WeChsel: Initialisation effective des intérêts de sous-mots pour le transfert croisé des modèles de langage monolingue publiés sur NAACL2022.
Document: https://aclanthology.org/2022.naacl-main.293/

Les modèles du papier sont disponibles sur le hub huggingface:
roberta-base-wechsel-frenchroberta-base-wechsel-germanroberta-base-wechsel-chineseroberta-base-wechsel-swahiligpt2-wechsel-frenchgpt2-wechsel-germangpt2-wechsel-chinesegpt2-wechsel-swahili Nous distribuons un package Python via PYPI:
pip install wechsel
Alternativement, clonez le référentiel, installez requirements.txt et exécutez le code dans wechsel/ .
Transfert roberta-base anglaise au swahili:
import torch
from transformers import AutoModel , AutoTokenizer
from datasets import load_dataset
from wechsel import WECHSEL , load_embeddings
source_tokenizer = AutoTokenizer . from_pretrained ( "roberta-base" )
model = AutoModel . from_pretrained ( "roberta-base" )
target_tokenizer = source_tokenizer . train_new_from_iterator (
load_dataset ( "oscar" , "unshuffled_deduplicated_sw" , split = "train" )[ "text" ],
vocab_size = len ( source_tokenizer )
)
wechsel = WECHSEL (
load_embeddings ( "en" ),
load_embeddings ( "sw" ),
bilingual_dictionary = "swahili"
)
target_embeddings , info = wechsel . apply (
source_tokenizer ,
target_tokenizer ,
model . get_input_embeddings (). weight . detach (). numpy (),
)
model . get_input_embeddings (). weight . data = torch . from_numpy ( target_embeddings )
model . config . vocab_size = len ( target_embeddings )
# if the model has separate output embeddings, also copy those
if not model . config . tie_word_embeddings :
target_out_embeddings , info = wechsel . apply (
source_tokenizer ,
target_tokenizer ,
model . get_output_embeddings (). weight . detach (). numpy (),
)
model . get_output_embeddings (). weight . data = torch . from_numpy ( target_out_embeddings )
# use `model` and `target_tokenizer` to continue training in Swahili! Nous distribuons 3276 dictionnaires bilingues de l'anglais à d'autres langues à utiliser avec Wechsel dans dicts/ .
Veuillez citer Wechsel comme
@inproceedings{minixhofer-etal-2022-wechsel,
title = "{WECHSEL}: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models",
author = "Minixhofer, Benjamin and
Paischer, Fabian and
Rekabsaz, Navid",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.293",
pages = "3992--4006",
abstract = "Large pretrained language models (LMs) have become the central building block of many NLP applications. Training these models requires ever more computational resources and most of the existing models are trained on English text only. It is exceedingly expensive to train these models in other languages. To alleviate this problem, we introduce a novel method {--} called WECHSEL {--} to efficiently and effectively transfer pretrained LMs to new languages. WECHSEL can be applied to any model which uses subword-based tokenization and learns an embedding for each subword. The tokenizer of the source model (in English) is replaced with a tokenizer in the target language and token embeddings are initialized such that they are semantically similar to the English tokens by utilizing multilingual static word embeddings covering English and the target language. We use WECHSEL to transfer the English RoBERTa and GPT-2 models to four languages (French, German, Chinese and Swahili). We also study the benefits of our method on very low-resource languages. WECHSEL improves over proposed methods for cross-lingual parameter transfer and outperforms models of comparable size trained from scratch with up to 64x less training effort. Our method makes training large language models for new languages more accessible and less damaging to the environment. We make our code and models publicly available.",
}
Recherche soutenue par les TPU cloud du TPU Research Cloud de Google (TRC). Nous remercions Andy Koh et Artus Krohn-Grimberghe pour avoir fourni des ressources informatiques supplémentaires. L'unité Ellis Linz, le laboratoire éclairé en AI, l'Institut pour l'apprentissage automatique, est soutenue par l'État fédéral supérieur de l'Autriche. Nous remercions le projet Incontrol-RL (FFG-881064).