Implementación no oficial del documento VITS2, secuela de VITS Paper. (¡Gracias a los autores por su trabajo!)

Los modelos de texto a voz de una sola etapa se han estudiado activamente recientemente, y sus resultados han superado a los sistemas de tuberías de dos etapas. Aunque el modelo anterior de una sola etapa ha hecho un gran progreso, hay margen de mejora en términos de su antinatural intermitente, eficiencia computacional y una fuerte dependencia de la conversión de fonemas. En este trabajo, presentamos VITS2, un modelo de texto a voz de una sola etapa que sintetiza eficientemente un discurso más natural al mejorar varios aspectos del trabajo anterior. Proponemos estructuras y mecanismos de entrenamiento mejorados y presentamos que los métodos propuestos son efectivos para mejorar la naturalidad, la similitud de las características del habla en un modelo de múltiples altavoces y la eficiencia de entrenamiento e inferencia. Además, demostramos que la fuerte dependencia de la conversión de fonemas en trabajos anteriores puede reducirse significativamente con nuestro método, lo que permite un enfoque de una sola etapa totalmente de extremo a finales.
apt-get install espeakln -s /path/to/LJSpeech-1.1/wavs DUMMY1ln -s /path/to/VCTK-Corpus/downsampled_wavs DUMMY2 # Cython-version Monotonoic Alignment Search
cd monotonic_align
python setup.py build_ext --inplace
# Preprocessing (g2p) for your own datasets. Preprocessed phonemes for LJ Speech and VCTK have been already provided.
# python preprocess.py --text_index 1 --filelists filelists/ljs_audio_text_train_filelist.txt filelists/ljs_audio_text_val_filelist.txt filelists/ljs_audio_text_test_filelist.txt
# python preprocess.py --text_index 2 --filelists filelists/vctk_audio_sid_text_train_filelist.txt filelists/vctk_audio_sid_text_val_filelist.txt filelists/vctk_audio_sid_text_test_filelist.txt import torch
from models import SynthesizerTrn
net_g = SynthesizerTrn (
n_vocab = 256 ,
spec_channels = 80 , # <--- vits2 parameter (changed from 513 to 80)
segment_size = 8192 ,
inter_channels = 192 ,
hidden_channels = 192 ,
filter_channels = 768 ,
n_heads = 2 ,
n_layers = 6 ,
kernel_size = 3 ,
p_dropout = 0.1 ,
resblock = "1" ,
resblock_kernel_sizes = [ 3 , 7 , 11 ],
resblock_dilation_sizes = [[ 1 , 3 , 5 ], [ 1 , 3 , 5 ], [ 1 , 3 , 5 ]],
upsample_rates = [ 8 , 8 , 2 , 2 ],
upsample_initial_channel = 512 ,
upsample_kernel_sizes = [ 16 , 16 , 4 , 4 ],
n_speakers = 0 ,
gin_channels = 0 ,
use_sdp = True ,
use_transformer_flows = True , # <--- vits2 parameter
# (choose from "pre_conv", "fft", "mono_layer_inter_residual", "mono_layer_post_residual")
transformer_flow_type = "fft" , # <--- vits2 parameter
use_spk_conditioned_encoder = True , # <--- vits2 parameter
use_noise_scaled_mas = True , # <--- vits2 parameter
use_duration_discriminator = True , # <--- vits2 parameter
)
x = torch . LongTensor ([[ 1 , 2 , 3 ],[ 4 , 5 , 6 ]]) # token ids
x_lengths = torch . LongTensor ([ 3 , 2 ]) # token lengths
y = torch . randn ( 2 , 80 , 100 ) # mel spectrograms
y_lengths = torch . Tensor ([ 100 , 80 ]) # mel spectrogram lengths
net_g (
x = x ,
x_lengths = x_lengths ,
y = y ,
y_lengths = y_lengths ,
)
# calculate loss and backpropagate # LJ Speech
python train.py -c configs/vits2_ljs_nosdp.json -m ljs_base # no-sdp; (recommended)
python train.py -c configs/vits2_ljs_base.json -m ljs_base # with sdp;
# VCTK
python train_ms.py -c configs/vits2_vctk_base.json -m vctk_base
# for onnx export of trained models
python export_onnx.py --model-path= " G_64000.pth " --config-path= " config.json " --output= " vits2.onnx "
python infer_onnx.py --model= " vits2.onnx " --config-path= " config.json " --output-wav-path= " output.wav " --text= " hello world, how are you? "