EmbedInDB
v0.2.1
Embredin ist eine Open-Source-Vektor-Datenbank und eine effiziente Bibliothek, in der beliebte Datenbanken wie MySQL, PostgreSQL und MS SQL Server nahtlos in Vektordatenbanken ohne Anstrengung umwandelt werden.
Embredin ist eine ideale Lösung für KI -Anwendungen wie Verarbeitung natürlicher Sprache, Bilderkennung und Empfehlungssysteme, die eine schnelle Indexierung und Abruf anbieten. Die einfache API und die Abfragesprache sorgen für eine einfache Gebrauchs und nahtlose Integration.
Python 3.7 oder höher.
pip install embedin from embedin import Embedin
client = Embedin ( collection_name = "test_collection" , texts = [ "This is a test" , "Hello world!" ])
result = client . query ( "These are tests" , top_k = 1 ) # Query the most similar text from the collection
print ( result ) from embedin import Embedin
url = 'sqlite:///test.db'
client = Embedin ( collection_name = "test_collection" , texts = [ "This is a test" , "Hello world!" ], url = url )
result = client . query ( "These are tests" , top_k = 1 ) cd docker
docker-compose up embedin-postgresBeispiel
import os
from embedin import Embedin
url = os . getenv ( 'EMBEDIN_POSGRES_URL' , "postgresql+psycopg2://embedin:embedin@localhost/embedin_db" )
client = Embedin ( collection_name = "test_collection" , texts = [ "This is a test" , "Hello world!" ], url = url )
result = client . query ( "These are tests" , top_k = 1 ) cd docker
docker-compose up embedin-mysqlBeispiel
import os
from embedin import Embedin
url = os . getenv ( 'EMBEDIN_MYSQL_URL' , "mysql+pymysql://embedin:embedin@localhost/embedin_db" )
client = Embedin ( collection_name = "test_collection" , texts = [ "This is a test" , "Hello world!" ], url = url )
result = client . query ( "These are tests" , top_k = 1 ) cd docker
docker-compose up embedin-mssqlBeispiel
import os
from embedin import Embedin
url = os . getenv ( 'EMBEDIN_MSSQL_URL' , "mssql+pymssql://sa:StrongPassword123@localhost/tempdb" )
client = Embedin ( collection_name = "test_collection" , url = url )
client . add_data ( texts = [ "This is a test" ], meta_data = [{ "source" : "abc4" }])
result = client . query ( "These are tests" , top_k = 1 )Bitte beziehen Sie sich auf die Mitwirkenden