ark nlp
V0.0.9
Ark-NLP sammelt und reproduziert hauptsächlich NLP-Modelle in Akademikern und Arbeiten.
pip install --upgrade ark-nlp
| ARK_NLP | Open Source natürliche Sprachverarbeitungsbibliothek |
| ARK_NLP.DATASET | Kapitulelle Funktionen wie das Laden, Verarbeitung und Umwandlung von Daten |
| ARK_NLP.NN | In ein paar komplette neuronale Netzwerkmodelle zusammenfassen |
| ARK_NLP.PROCESSOR | Kapulierte Wortsegmentierung, Wörterbuch und Zusammensetzung usw. |
| ARK_NLP.FAKTORY | Einkapselung von Verlustfunktionen, Optimierern, Trainings- und Vorhersagefunktionen |
| ARK_NLP.MODEL | Kapitulelle häufig verwendete Modelle gemäß den tatsächlichen NLP -Aufgaben einkapseln, so |
| Modell | Referenzen |
|---|---|
| Bert | Bert: Vorausbildung von tiefen bidirektionalen Transformatoren für das Sprachverständnis |
| Ernie1.0 | Ernie: Verbesserte Darstellung durch Wissensintegration |
| Nezha | Nezha: Neuronale kontextualisierte Darstellung für das Verständnis der chinesischen Sprache |
| Roformer | ROFORMER: Verbesserter Transformator mit der Einbettung von Rotary Position |
| Ernie-CTM | Ernie-CTM (Ernie für den chinesischen Textabbau) |
| Modell | Einführung |
|---|---|
| RNN/CNN/Gru/lstm | Klassische Textklassifizierungsstrukturen wie RNN, CNN, Gru, LSTM usw. |
| Bert/Ernie | Häufig verwendete vorgebrachte Modellklassifizierung |
| Modell | Einführung |
|---|---|
| Bert/Ernie | Am häufig verwendeten vorab vorbereiteten Modellanpassungsklassifizierung |
| Unbeaufsichtigt | Unbeaufsichtigter Simcse -Matching -Algorithmus |
| Cosent | Cosent: Ein effizienteres Satzvektor-Schema als Satztbert |
| Modell | Referenzen | Papierquellcode |
|---|---|---|
| CRF Bert | ||
| BIAFFINE BERT | ||
| Spaler Bert | ||
| Globaler Zeiger Bert | GlobalPointer: Behandeln Sie ein verschachtelter und nicht gesetzter Ner auf einheitliche Weise | |
| Effizienter globaler Zeiger Bert | Effizienter globalPointer: weniger Parameter, mehr Effekte | |
| W2ner Bert | Unified genannte Entitätserkennung als Klassifizierung der Wortwortbeziehung | Github |
| Modell | Referenzen | Papierquellcode |
|---|---|---|
| Casrel | Ein neuartiger Binär -Tagging -Framework für die relationale Dreifachextraktion | Github |
| PRGC | PRGC: Potenzielle Beziehung und globaler Korrespondenzbasis gemeinsamer relationaler dreifache Extraktion | Github |
| Modell | Referenzen | Papierquellcode |
|---|---|---|
| Promptuie | Universal Information Extraction UIE (Universal Information Extraction) | Github |
| Modell | Referenzen | Papierquellcode |
|---|---|---|
| Eingabeaufforderung | Pre-Train, Eingabeaufforderung und Vorhersage: Eine systematische Übersicht über die Aufforderung Methoden in der Verarbeitung natürlicher Sprache) |
Für den vollständigen Code finden Sie im test .
Textklassifizierung
import torch
import pandas as pd
from ark_nlp . model . tc . bert import Bert
from ark_nlp . model . tc . bert import BertConfig
from ark_nlp . model . tc . bert import Dataset
from ark_nlp . model . tc . bert import Task
from ark_nlp . model . tc . bert import get_default_model_optimizer
from ark_nlp . model . tc . bert import Tokenizer
# 加载数据集
# train_data_df的columns必选包含"text"和"label"
# text列为文本,label列为分类标签
tc_train_dataset = Dataset ( train_data_df )
tc_dev_dataset = Dataset ( dev_data_df )
# 加载分词器
tokenizer = Tokenizer ( vocab = 'nghuyong/ernie-1.0' , max_seq_len = 30 )
# 文本切分、ID化
tc_train_dataset . convert_to_ids ( tokenizer )
tc_dev_dataset . convert_to_ids ( tokenizer )
# 加载预训练模型
config = BertConfig . from_pretrained ( 'nghuyong/ernie-1.0' ,
num_labels = len ( tc_train_dataset . cat2id ))
dl_module = Bert . from_pretrained ( 'nghuyong/ernie-1.0' ,
config = config )
# 任务构建
num_epoches = 10
batch_size = 32
optimizer = get_default_model_optimizer ( dl_module )
model = Task ( dl_module , optimizer , 'ce' , cuda_device = 0 )
# 训练
model . fit ( tc_train_dataset ,
tc_dev_dataset ,
lr = 2e-5 ,
epochs = 5 ,
batch_size = batch_size
)
# 推断
from ark_nlp . model . tc . bert import Predictor
tc_predictor_instance = Predictor ( model . module , tokenizer , tc_train_dataset . cat2id )
tc_predictor_instance . predict_one_sample (待预测文本)Textübereinstimmung
import torch
import pandas as pd
from ark_nlp . model . tm . bert import Bert
from ark_nlp . model . tm . bert import BertConfig
from ark_nlp . model . tm . bert import Dataset
from ark_nlp . model . tm . bert import Task
from ark_nlp . model . tm . bert import get_default_model_optimizer
from ark_nlp . model . tm . bert import Tokenizer
# 加载数据集
# train_data_df的columns必选包含"text_a"、"text_b"和"label"
# text_a和text_b列为文本,label列为匹配标签
tm_train_dataset = Dataset ( train_data_df )
tm_dev_dataset = Dataset ( dev_data_df )
# 加载分词器
tokenizer = Tokenizer ( vocab = 'nghuyong/ernie-1.0' , max_seq_len = 30 )
# 文本切分、ID化
tm_train_dataset . convert_to_ids ( tokenizer )
tm_dev_dataset . convert_to_ids ( tokenizer )
# 加载预训练模型
config = BertConfig . from_pretrained ( 'nghuyong/ernie-1.0' ,
num_labels = len ( tm_train_dataset . cat2id ))
dl_module = Bert . from_pretrained ( 'nghuyong/ernie-1.0' ,
config = config )
# 任务构建
num_epoches = 10
batch_size = 32
optimizer = get_default_model_optimizer ( dl_module )
model = Task ( dl_module , optimizer , 'ce' , cuda_device = 0 )
# 训练
model . fit ( tm_train_dataset ,
tm_dev_dataset ,
lr = 2e-5 ,
epochs = 5 ,
batch_size = batch_size
)
# 推断
from ark_nlp . model . tm . bert import Predictor
tm_predictor_instance = Predictor ( model . module , tokenizer , tm_train_dataset . cat2id )
tm_predictor_instance . predict_one_sample ([待预测文本A , 待预测文本B ])Genannte Entität
import torch
import pandas as pd
from ark_nlp . model . ner . crf_bert import CRFBert
from ark_nlp . model . ner . crf_bert import CRFBertConfig
from ark_nlp . model . ner . crf_bert import Dataset
from ark_nlp . model . ner . crf_bert import Task
from ark_nlp . model . ner . crf_bert import get_default_model_optimizer
from ark_nlp . model . ner . crf_bert import Tokenizer
# 加载数据集
# train_data_df的columns必选包含"text"和"label"
# text列为文本
# label列为列表形式,列表中每个元素是如下组织的字典
# {'start_idx': 实体首字符在文本的位置, 'end_idx': 实体尾字符在文本的位置, 'type': 实体类型标签, 'entity': 实体}
ner_train_dataset = Dataset ( train_data_df )
ner_dev_dataset = Dataset ( dev_data_df )
# 加载分词器
tokenizer = Tokenizer ( vocab = 'nghuyong/ernie-1.0' , max_seq_len = 30 )
# 文本切分、ID化
ner_train_dataset . convert_to_ids ( tokenizer )
ner_dev_dataset . convert_to_ids ( tokenizer )
# 加载预训练模型
config = CRFBertConfig . from_pretrained ( 'nghuyong/ernie-1.0' ,
num_labels = len ( ner_train_dataset . cat2id ))
dl_module = CRFBert . from_pretrained ( 'nghuyong/ernie-1.0' ,
config = config )
# 任务构建
num_epoches = 10
batch_size = 32
optimizer = get_default_model_optimizer ( dl_module )
model = Task ( dl_module , optimizer , 'ce' , cuda_device = 0 )
# 训练
model . fit ( ner_train_dataset ,
ner_dev_dataset ,
lr = 2e-5 ,
epochs = 5 ,
batch_size = batch_size
)
# 推断
from ark_nlp . model . ner . crf_bert import Predictor
ner_predictor_instance = Predictor ( model . module , tokenizer , ner_train_dataset . cat2id )
ner_predictor_instance . predict_one_sample (待抽取文本)Casrel -Beziehungsextraktion
import torch
import pandas as pd
from ark_nlp . model . re . casrel_bert import CasRelBert
from ark_nlp . model . re . casrel_bert import CasRelBertConfig
from ark_nlp . model . re . casrel_bert import Dataset
from ark_nlp . model . re . casrel_bert import Task
from ark_nlp . model . re . casrel_bert import get_default_model_optimizer
from ark_nlp . model . re . casrel_bert import Tokenizer
from ark_nlp . factory . loss_function import CasrelLoss
# 加载数据集
# train_data_df的columns必选包含"text"和"label"
# text列为文本
# label列为列表形式,列表中每个元素是如下组织的字典
# [头实体, 头实体首字符在文本的位置, 头实体尾字符在文本的位置, 关系类型, 尾实体, 尾实体首字符在文本的位置, 尾实体尾字符在文本的位置]
re_train_dataset = Dataset ( train_data_df )
re_dev_dataset = Dataset ( dev_data_df ,
categories = re_train_dataset . categories ,
is_train = False )
# 加载分词器
tokenizer = Tokenizer ( vocab = 'nghuyong/ernie-1.0' , max_seq_len = 100 )
# 文本切分、ID化
# 注意:casrel的代码这部分其实并没有进行切分、ID化,仅是将分词器赋予dataset对象
re_train_dataset . convert_to_ids ( tokenizer )
re_dev_dataset . convert_to_ids ( tokenizer )
# 加载预训练模型
config = CasRelBertConfig . from_pretrained ( 'nghuyong/ernie-1.0' ,
num_labels = len ( re_train_dataset . cat2id ))
dl_module = CasRelBert . from_pretrained ( 'nghuyong/ernie-1.0' ,
config = config )
# 任务构建
num_epoches = 40
batch_size = 16
optimizer = get_default_model_optimizer ( dl_module )
model = Task ( dl_module , optimizer , CasrelLoss (), cuda_device = 0 )
# 训练
model . fit ( re_train_dataset ,
re_dev_dataset ,
lr = 2e-5 ,
epochs = 5 ,
batch_size = batch_size
)
# 推断
from ark_nlp . model . re . casrel_bert import Predictor
casrel_re_predictor_instance = Predictor ( model . module , tokenizer , re_train_dataset . cat2id )
casrel_re_predictor_instance . predict_one_sample (待抽取文本)PRGC -Beziehungsextraktion
import torch
import pandas as pd
from ark_nlp . model . re . prgc_bert import PRGCBert
from ark_nlp . model . re . prgc_bert import PRGCBertConfig
from ark_nlp . model . re . prgc_bert import Dataset
from ark_nlp . model . re . prgc_bert import Task
from ark_nlp . model . re . prgc_bert import get_default_model_optimizer
from ark_nlp . model . re . prgc_bert import Tokenizer
# 加载数据集
# train_data_df的columns必选包含"text"和"label"
# text列为文本
# label列为列表形式,列表中每个元素是如下组织的字典
# [头实体, 头实体首字符在文本的位置, 头实体尾字符在文本的位置, 关系类型, 尾实体, 尾实体首字符在文本的位置, 尾实体尾字符在文本的位置]
re_train_dataset = Dataset ( train_df , is_retain_dataset = True )
re_dev_dataset = Dataset ( dev_df ,
categories = re_train_dataset . categories ,
is_train = False )
# 加载分词器
tokenizer = Tokenizer ( vocab = 'nghuyong/ernie-1.0' , max_seq_len = 100 )
# 文本切分、ID化
re_train_dataset . convert_to_ids ( tokenizer )
re_dev_dataset . convert_to_ids ( tokenizer )
# 加载预训练模型
config = PRGCBertConfig . from_pretrained ( 'nghuyong/ernie-1.0' ,
num_labels = len ( re_train_dataset . cat2id ))
dl_module = PRGCBert . from_pretrained ( 'nghuyong/ernie-1.0' ,
config = config )
# 任务构建
num_epoches = 40
batch_size = 16
optimizer = get_default_model_optimizer ( dl_module )
model = Task ( dl_module , optimizer , None , cuda_device = 0 )
# 训练
model . fit ( re_train_dataset ,
re_dev_dataset ,
lr = 2e-5 ,
epochs = 5 ,
batch_size = batch_size
)
# 推断
from ark_nlp . model . re . prgc_bert import Predictor
prgc_re_predictor_instance = Predictor ( model . module , tokenizer , re_train_dataset . cat2id )
prgc_re_predictor_instance . predict_one_sample (待抽取文本)
Xiangking | Jimme | Zrealthadow |
Dieses Projekt wird verwendet, um die häufig verwendeten NLP -Modelle in Akademikern und Arbeiten zu sammeln und zu reproduzieren und sie in eine bequeme Anrufform zu integrieren, sodass es durch viele Open -Source -Implementierungen im Internet verwiesen wird. Wenn es unangemessene Aspekte gibt, kontaktieren Sie uns bitte für Kritik und Rat. Hier, vielen Dank für Ihre Open Source -Implementierung.