ark nlp
V0.0.9
ark-nlp主要是收集和復現學術與工作中常用的NLP模型
pip install --upgrade ark-nlp
| ark_nlp | 開源的自然語言處理庫 |
| ark_nlp.dataset | 封裝數據加載、處理和轉化等功能 |
| ark_nlp.nn | 封裝一些完整的神經網絡模型 |
| ark_nlp.processor | 封裝分詞器、詞典和構圖器等 |
| ark_nlp.factory | 封裝損失函數、優化器、訓練和預測等功能 |
| ark_nlp.model | 按實際NLP任務封裝常用的模型,方便調用 |
| 模型 | 參考文獻 |
|---|---|
| BERT | BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding |
| ERNIE1.0 | ERNIE:Enhanced Representation through Knowledge Integration |
| NEZHA | NEZHA:Neural Contextualized Representation For Chinese Language Understanding |
| Roformer | Roformer: Enhanced Transformer with Rotary Position Embedding |
| ERNIE-CTM | ERNIE-CTM(ERNIE for Chinese Text Mining) |
| 模型 | 簡介 |
|---|---|
| RNN/CNN/GRU/LSTM | 經典的RNN, CNN, GRU, LSTM等經典文本分類結構 |
| BERT/ERNIE | 常用的預訓練模型分類 |
| 模型 | 簡介 |
|---|---|
| BERT/ERNIE | 常用的預訓練模型匹配分類 |
| UnsupervisedSimcse | 無監督Simcse匹配算法 |
| CoSENT | CoSENT:比Sentence-BERT更有效的句向量方案 |
| 模型 | 參考文獻 | 論文源碼 |
|---|---|---|
| CRF BERT | ||
| Biaffine BERT | ||
| Span BERT | ||
| Global Pointer BERT | GlobalPointer:用統一的方式處理嵌套和非嵌套NER | |
| Efficient Global Pointer BERT | Efficient GlobalPointer:少點參數,多點效果 | |
| W2NER BERT | Unified Named Entity Recognition as Word-Word Relation Classification | github |
| 模型 | 參考文獻 | 論文源碼 |
|---|---|---|
| Casrel | A Novel Cascade Binary Tagging Framework for Relational Triple Extraction | github |
| PRGC | PRGC: Potential Relation and Global Correspondence Based Joint Relational Triple Extraction | github |
| 模型 | 參考文獻 | 論文源碼 |
|---|---|---|
| PromptUie | 通用信息抽取UIE(Universal Information Extraction) | github |
| 模型 | 參考文獻 | 論文源碼 |
|---|---|---|
| PromptBert | Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing) |
完整代碼可參考test文件夾
文本分類
import torch
import pandas as pd
from ark_nlp . model . tc . bert import Bert
from ark_nlp . model . tc . bert import BertConfig
from ark_nlp . model . tc . bert import Dataset
from ark_nlp . model . tc . bert import Task
from ark_nlp . model . tc . bert import get_default_model_optimizer
from ark_nlp . model . tc . bert import Tokenizer
# 加载数据集
# train_data_df的columns必选包含"text"和"label"
# text列为文本,label列为分类标签
tc_train_dataset = Dataset ( train_data_df )
tc_dev_dataset = Dataset ( dev_data_df )
# 加载分词器
tokenizer = Tokenizer ( vocab = 'nghuyong/ernie-1.0' , max_seq_len = 30 )
# 文本切分、ID化
tc_train_dataset . convert_to_ids ( tokenizer )
tc_dev_dataset . convert_to_ids ( tokenizer )
# 加载预训练模型
config = BertConfig . from_pretrained ( 'nghuyong/ernie-1.0' ,
num_labels = len ( tc_train_dataset . cat2id ))
dl_module = Bert . from_pretrained ( 'nghuyong/ernie-1.0' ,
config = config )
# 任务构建
num_epoches = 10
batch_size = 32
optimizer = get_default_model_optimizer ( dl_module )
model = Task ( dl_module , optimizer , 'ce' , cuda_device = 0 )
# 训练
model . fit ( tc_train_dataset ,
tc_dev_dataset ,
lr = 2e-5 ,
epochs = 5 ,
batch_size = batch_size
)
# 推断
from ark_nlp . model . tc . bert import Predictor
tc_predictor_instance = Predictor ( model . module , tokenizer , tc_train_dataset . cat2id )
tc_predictor_instance . predict_one_sample (待预测文本)文本匹配
import torch
import pandas as pd
from ark_nlp . model . tm . bert import Bert
from ark_nlp . model . tm . bert import BertConfig
from ark_nlp . model . tm . bert import Dataset
from ark_nlp . model . tm . bert import Task
from ark_nlp . model . tm . bert import get_default_model_optimizer
from ark_nlp . model . tm . bert import Tokenizer
# 加载数据集
# train_data_df的columns必选包含"text_a"、"text_b"和"label"
# text_a和text_b列为文本,label列为匹配标签
tm_train_dataset = Dataset ( train_data_df )
tm_dev_dataset = Dataset ( dev_data_df )
# 加载分词器
tokenizer = Tokenizer ( vocab = 'nghuyong/ernie-1.0' , max_seq_len = 30 )
# 文本切分、ID化
tm_train_dataset . convert_to_ids ( tokenizer )
tm_dev_dataset . convert_to_ids ( tokenizer )
# 加载预训练模型
config = BertConfig . from_pretrained ( 'nghuyong/ernie-1.0' ,
num_labels = len ( tm_train_dataset . cat2id ))
dl_module = Bert . from_pretrained ( 'nghuyong/ernie-1.0' ,
config = config )
# 任务构建
num_epoches = 10
batch_size = 32
optimizer = get_default_model_optimizer ( dl_module )
model = Task ( dl_module , optimizer , 'ce' , cuda_device = 0 )
# 训练
model . fit ( tm_train_dataset ,
tm_dev_dataset ,
lr = 2e-5 ,
epochs = 5 ,
batch_size = batch_size
)
# 推断
from ark_nlp . model . tm . bert import Predictor
tm_predictor_instance = Predictor ( model . module , tokenizer , tm_train_dataset . cat2id )
tm_predictor_instance . predict_one_sample ([待预测文本A , 待预测文本B ])命名實體
import torch
import pandas as pd
from ark_nlp . model . ner . crf_bert import CRFBert
from ark_nlp . model . ner . crf_bert import CRFBertConfig
from ark_nlp . model . ner . crf_bert import Dataset
from ark_nlp . model . ner . crf_bert import Task
from ark_nlp . model . ner . crf_bert import get_default_model_optimizer
from ark_nlp . model . ner . crf_bert import Tokenizer
# 加载数据集
# train_data_df的columns必选包含"text"和"label"
# text列为文本
# label列为列表形式,列表中每个元素是如下组织的字典
# {'start_idx': 实体首字符在文本的位置, 'end_idx': 实体尾字符在文本的位置, 'type': 实体类型标签, 'entity': 实体}
ner_train_dataset = Dataset ( train_data_df )
ner_dev_dataset = Dataset ( dev_data_df )
# 加载分词器
tokenizer = Tokenizer ( vocab = 'nghuyong/ernie-1.0' , max_seq_len = 30 )
# 文本切分、ID化
ner_train_dataset . convert_to_ids ( tokenizer )
ner_dev_dataset . convert_to_ids ( tokenizer )
# 加载预训练模型
config = CRFBertConfig . from_pretrained ( 'nghuyong/ernie-1.0' ,
num_labels = len ( ner_train_dataset . cat2id ))
dl_module = CRFBert . from_pretrained ( 'nghuyong/ernie-1.0' ,
config = config )
# 任务构建
num_epoches = 10
batch_size = 32
optimizer = get_default_model_optimizer ( dl_module )
model = Task ( dl_module , optimizer , 'ce' , cuda_device = 0 )
# 训练
model . fit ( ner_train_dataset ,
ner_dev_dataset ,
lr = 2e-5 ,
epochs = 5 ,
batch_size = batch_size
)
# 推断
from ark_nlp . model . ner . crf_bert import Predictor
ner_predictor_instance = Predictor ( model . module , tokenizer , ner_train_dataset . cat2id )
ner_predictor_instance . predict_one_sample (待抽取文本)Casrel關係抽取
import torch
import pandas as pd
from ark_nlp . model . re . casrel_bert import CasRelBert
from ark_nlp . model . re . casrel_bert import CasRelBertConfig
from ark_nlp . model . re . casrel_bert import Dataset
from ark_nlp . model . re . casrel_bert import Task
from ark_nlp . model . re . casrel_bert import get_default_model_optimizer
from ark_nlp . model . re . casrel_bert import Tokenizer
from ark_nlp . factory . loss_function import CasrelLoss
# 加载数据集
# train_data_df的columns必选包含"text"和"label"
# text列为文本
# label列为列表形式,列表中每个元素是如下组织的字典
# [头实体, 头实体首字符在文本的位置, 头实体尾字符在文本的位置, 关系类型, 尾实体, 尾实体首字符在文本的位置, 尾实体尾字符在文本的位置]
re_train_dataset = Dataset ( train_data_df )
re_dev_dataset = Dataset ( dev_data_df ,
categories = re_train_dataset . categories ,
is_train = False )
# 加载分词器
tokenizer = Tokenizer ( vocab = 'nghuyong/ernie-1.0' , max_seq_len = 100 )
# 文本切分、ID化
# 注意:casrel的代码这部分其实并没有进行切分、ID化,仅是将分词器赋予dataset对象
re_train_dataset . convert_to_ids ( tokenizer )
re_dev_dataset . convert_to_ids ( tokenizer )
# 加载预训练模型
config = CasRelBertConfig . from_pretrained ( 'nghuyong/ernie-1.0' ,
num_labels = len ( re_train_dataset . cat2id ))
dl_module = CasRelBert . from_pretrained ( 'nghuyong/ernie-1.0' ,
config = config )
# 任务构建
num_epoches = 40
batch_size = 16
optimizer = get_default_model_optimizer ( dl_module )
model = Task ( dl_module , optimizer , CasrelLoss (), cuda_device = 0 )
# 训练
model . fit ( re_train_dataset ,
re_dev_dataset ,
lr = 2e-5 ,
epochs = 5 ,
batch_size = batch_size
)
# 推断
from ark_nlp . model . re . casrel_bert import Predictor
casrel_re_predictor_instance = Predictor ( model . module , tokenizer , re_train_dataset . cat2id )
casrel_re_predictor_instance . predict_one_sample (待抽取文本)PRGC關係抽取
import torch
import pandas as pd
from ark_nlp . model . re . prgc_bert import PRGCBert
from ark_nlp . model . re . prgc_bert import PRGCBertConfig
from ark_nlp . model . re . prgc_bert import Dataset
from ark_nlp . model . re . prgc_bert import Task
from ark_nlp . model . re . prgc_bert import get_default_model_optimizer
from ark_nlp . model . re . prgc_bert import Tokenizer
# 加载数据集
# train_data_df的columns必选包含"text"和"label"
# text列为文本
# label列为列表形式,列表中每个元素是如下组织的字典
# [头实体, 头实体首字符在文本的位置, 头实体尾字符在文本的位置, 关系类型, 尾实体, 尾实体首字符在文本的位置, 尾实体尾字符在文本的位置]
re_train_dataset = Dataset ( train_df , is_retain_dataset = True )
re_dev_dataset = Dataset ( dev_df ,
categories = re_train_dataset . categories ,
is_train = False )
# 加载分词器
tokenizer = Tokenizer ( vocab = 'nghuyong/ernie-1.0' , max_seq_len = 100 )
# 文本切分、ID化
re_train_dataset . convert_to_ids ( tokenizer )
re_dev_dataset . convert_to_ids ( tokenizer )
# 加载预训练模型
config = PRGCBertConfig . from_pretrained ( 'nghuyong/ernie-1.0' ,
num_labels = len ( re_train_dataset . cat2id ))
dl_module = PRGCBert . from_pretrained ( 'nghuyong/ernie-1.0' ,
config = config )
# 任务构建
num_epoches = 40
batch_size = 16
optimizer = get_default_model_optimizer ( dl_module )
model = Task ( dl_module , optimizer , None , cuda_device = 0 )
# 训练
model . fit ( re_train_dataset ,
re_dev_dataset ,
lr = 2e-5 ,
epochs = 5 ,
batch_size = batch_size
)
# 推断
from ark_nlp . model . re . prgc_bert import Predictor
prgc_re_predictor_instance = Predictor ( model . module , tokenizer , re_train_dataset . cat2id )
prgc_re_predictor_instance . predict_one_sample (待抽取文本)
xiangking | Jimme | Zrealshadow |
本項目用於收集和復現學術與工作中常用的NLP模型,整合成方便調用的形式,所以參考借鑒了網上很多開源實現,如有不當的地方,還請聯繫批評指教。 在此,感謝大佬們的開源實現。