ark nlp
V0.0.9
ark-nlp主要是收集和复现学术与工作中常用的NLP模型
pip install --upgrade ark-nlp
| ark_nlp | 开源的自然语言处理库 |
| ark_nlp.dataset | 封装数据加载、处理和转化等功能 |
| ark_nlp.nn | 封装一些完整的神经网络模型 |
| ark_nlp.processor | 封装分词器、词典和构图器等 |
| ark_nlp.factory | 封装损失函数、优化器、训练和预测等功能 |
| ark_nlp.model | 按实际NLP任务封装常用的模型,方便调用 |
| 模型 | 参考文献 |
|---|---|
| BERT | BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding |
| ERNIE1.0 | ERNIE:Enhanced Representation through Knowledge Integration |
| NEZHA | NEZHA:Neural Contextualized Representation For Chinese Language Understanding |
| Roformer | Roformer: Enhanced Transformer with Rotary Position Embedding |
| ERNIE-CTM | ERNIE-CTM(ERNIE for Chinese Text Mining) |
| 模型 | 简介 |
|---|---|
| RNN/CNN/GRU/LSTM | 经典的RNN, CNN, GRU, LSTM等经典文本分类结构 |
| BERT/ERNIE | 常用的预训练模型分类 |
| 模型 | 简介 |
|---|---|
| BERT/ERNIE | 常用的预训练模型匹配分类 |
| UnsupervisedSimcse | 无监督Simcse匹配算法 |
| CoSENT | CoSENT:比Sentence-BERT更有效的句向量方案 |
| 模型 | 参考文献 | 论文源码 |
|---|---|---|
| CRF BERT | ||
| Biaffine BERT | ||
| Span BERT | ||
| Global Pointer BERT | GlobalPointer:用统一的方式处理嵌套和非嵌套NER | |
| Efficient Global Pointer BERT | Efficient GlobalPointer:少点参数,多点效果 | |
| W2NER BERT | Unified Named Entity Recognition as Word-Word Relation Classification | github |
| 模型 | 参考文献 | 论文源码 |
|---|---|---|
| Casrel | A Novel Cascade Binary Tagging Framework for Relational Triple Extraction | github |
| PRGC | PRGC: Potential Relation and Global Correspondence Based Joint Relational Triple Extraction | github |
| 模型 | 参考文献 | 论文源码 |
|---|---|---|
| PromptUie | 通用信息抽取 UIE(Universal Information Extraction) | github |
| 模型 | 参考文献 | 论文源码 |
|---|---|---|
| PromptBert | Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing) |
完整代码可参考test文件夹
文本分类
import torch
import pandas as pd
from ark_nlp.model.tc.bert import Bert
from ark_nlp.model.tc.bert import BertConfig
from ark_nlp.model.tc.bert import Dataset
from ark_nlp.model.tc.bert import Task
from ark_nlp.model.tc.bert import get_default_model_optimizer
from ark_nlp.model.tc.bert import Tokenizer
# 加载数据集
# train_data_df的columns必选包含"text"和"label"
# text列为文本,label列为分类标签
tc_train_dataset = Dataset(train_data_df)
tc_dev_dataset = Dataset(dev_data_df)
# 加载分词器
tokenizer = Tokenizer(vocab='nghuyong/ernie-1.0', max_seq_len=30)
# 文本切分、ID化
tc_train_dataset.convert_to_ids(tokenizer)
tc_dev_dataset.convert_to_ids(tokenizer)
# 加载预训练模型
config = BertConfig.from_pretrained('nghuyong/ernie-1.0',
num_labels=len(tc_train_dataset.cat2id))
dl_module = Bert.from_pretrained('nghuyong/ernie-1.0',
config=config)
# 任务构建
num_epoches = 10
batch_size = 32
optimizer = get_default_model_optimizer(dl_module)
model = Task(dl_module, optimizer, 'ce', cuda_device=0)
# 训练
model.fit(tc_train_dataset,
tc_dev_dataset,
lr=2e-5,
epochs=5,
batch_size=batch_size
)
# 推断
from ark_nlp.model.tc.bert import Predictor
tc_predictor_instance = Predictor(model.module, tokenizer, tc_train_dataset.cat2id)
tc_predictor_instance.predict_one_sample(待预测文本)文本匹配
import torch
import pandas as pd
from ark_nlp.model.tm.bert import Bert
from ark_nlp.model.tm.bert import BertConfig
from ark_nlp.model.tm.bert import Dataset
from ark_nlp.model.tm.bert import Task
from ark_nlp.model.tm.bert import get_default_model_optimizer
from ark_nlp.model.tm.bert import Tokenizer
# 加载数据集
# train_data_df的columns必选包含"text_a"、"text_b"和"label"
# text_a和text_b列为文本,label列为匹配标签
tm_train_dataset = Dataset(train_data_df)
tm_dev_dataset = Dataset(dev_data_df)
# 加载分词器
tokenizer = Tokenizer(vocab='nghuyong/ernie-1.0', max_seq_len=30)
# 文本切分、ID化
tm_train_dataset.convert_to_ids(tokenizer)
tm_dev_dataset.convert_to_ids(tokenizer)
# 加载预训练模型
config = BertConfig.from_pretrained('nghuyong/ernie-1.0',
num_labels=len(tm_train_dataset.cat2id))
dl_module = Bert.from_pretrained('nghuyong/ernie-1.0',
config=config)
# 任务构建
num_epoches = 10
batch_size = 32
optimizer = get_default_model_optimizer(dl_module)
model = Task(dl_module, optimizer, 'ce', cuda_device=0)
# 训练
model.fit(tm_train_dataset,
tm_dev_dataset,
lr=2e-5,
epochs=5,
batch_size=batch_size
)
# 推断
from ark_nlp.model.tm.bert import Predictor
tm_predictor_instance = Predictor(model.module, tokenizer, tm_train_dataset.cat2id)
tm_predictor_instance.predict_one_sample([待预测文本A, 待预测文本B])命名实体
import torch
import pandas as pd
from ark_nlp.model.ner.crf_bert import CRFBert
from ark_nlp.model.ner.crf_bert import CRFBertConfig
from ark_nlp.model.ner.crf_bert import Dataset
from ark_nlp.model.ner.crf_bert import Task
from ark_nlp.model.ner.crf_bert import get_default_model_optimizer
from ark_nlp.model.ner.crf_bert import Tokenizer
# 加载数据集
# train_data_df的columns必选包含"text"和"label"
# text列为文本
# label列为列表形式,列表中每个元素是如下组织的字典
# {'start_idx': 实体首字符在文本的位置, 'end_idx': 实体尾字符在文本的位置, 'type': 实体类型标签, 'entity': 实体}
ner_train_dataset = Dataset(train_data_df)
ner_dev_dataset = Dataset(dev_data_df)
# 加载分词器
tokenizer = Tokenizer(vocab='nghuyong/ernie-1.0', max_seq_len=30)
# 文本切分、ID化
ner_train_dataset.convert_to_ids(tokenizer)
ner_dev_dataset.convert_to_ids(tokenizer)
# 加载预训练模型
config = CRFBertConfig.from_pretrained('nghuyong/ernie-1.0',
num_labels=len(ner_train_dataset.cat2id))
dl_module = CRFBert.from_pretrained('nghuyong/ernie-1.0',
config=config)
# 任务构建
num_epoches = 10
batch_size = 32
optimizer = get_default_model_optimizer(dl_module)
model = Task(dl_module, optimizer, 'ce', cuda_device=0)
# 训练
model.fit(ner_train_dataset,
ner_dev_dataset,
lr=2e-5,
epochs=5,
batch_size=batch_size
)
# 推断
from ark_nlp.model.ner.crf_bert import Predictor
ner_predictor_instance = Predictor(model.module, tokenizer, ner_train_dataset.cat2id)
ner_predictor_instance.predict_one_sample(待抽取文本)Casrel关系抽取
import torch
import pandas as pd
from ark_nlp.model.re.casrel_bert import CasRelBert
from ark_nlp.model.re.casrel_bert import CasRelBertConfig
from ark_nlp.model.re.casrel_bert import Dataset
from ark_nlp.model.re.casrel_bert import Task
from ark_nlp.model.re.casrel_bert import get_default_model_optimizer
from ark_nlp.model.re.casrel_bert import Tokenizer
from ark_nlp.factory.loss_function import CasrelLoss
# 加载数据集
# train_data_df的columns必选包含"text"和"label"
# text列为文本
# label列为列表形式,列表中每个元素是如下组织的字典
# [头实体, 头实体首字符在文本的位置, 头实体尾字符在文本的位置, 关系类型, 尾实体, 尾实体首字符在文本的位置, 尾实体尾字符在文本的位置]
re_train_dataset = Dataset(train_data_df)
re_dev_dataset = Dataset(dev_data_df,
categories = re_train_dataset.categories,
is_train=False)
# 加载分词器
tokenizer = Tokenizer(vocab='nghuyong/ernie-1.0', max_seq_len=100)
# 文本切分、ID化
# 注意:casrel的代码这部分其实并没有进行切分、ID化,仅是将分词器赋予dataset对象
re_train_dataset.convert_to_ids(tokenizer)
re_dev_dataset.convert_to_ids(tokenizer)
# 加载预训练模型
config = CasRelBertConfig.from_pretrained('nghuyong/ernie-1.0',
num_labels=len(re_train_dataset.cat2id))
dl_module = CasRelBert.from_pretrained('nghuyong/ernie-1.0',
config=config)
# 任务构建
num_epoches = 40
batch_size = 16
optimizer = get_default_model_optimizer(dl_module)
model = Task(dl_module, optimizer, CasrelLoss(), cuda_device=0)
# 训练
model.fit(re_train_dataset,
re_dev_dataset,
lr=2e-5,
epochs=5,
batch_size=batch_size
)
# 推断
from ark_nlp.model.re.casrel_bert import Predictor
casrel_re_predictor_instance = Predictor(model.module, tokenizer, re_train_dataset.cat2id)
casrel_re_predictor_instance.predict_one_sample(待抽取文本)PRGC关系抽取
import torch
import pandas as pd
from ark_nlp.model.re.prgc_bert import PRGCBert
from ark_nlp.model.re.prgc_bert import PRGCBertConfig
from ark_nlp.model.re.prgc_bert import Dataset
from ark_nlp.model.re.prgc_bert import Task
from ark_nlp.model.re.prgc_bert import get_default_model_optimizer
from ark_nlp.model.re.prgc_bert import Tokenizer
# 加载数据集
# train_data_df的columns必选包含"text"和"label"
# text列为文本
# label列为列表形式,列表中每个元素是如下组织的字典
# [头实体, 头实体首字符在文本的位置, 头实体尾字符在文本的位置, 关系类型, 尾实体, 尾实体首字符在文本的位置, 尾实体尾字符在文本的位置]
re_train_dataset = Dataset(train_df, is_retain_dataset=True)
re_dev_dataset = Dataset(dev_df,
categories = re_train_dataset.categories,
is_train=False)
# 加载分词器
tokenizer = Tokenizer(vocab='nghuyong/ernie-1.0', max_seq_len=100)
# 文本切分、ID化
re_train_dataset.convert_to_ids(tokenizer)
re_dev_dataset.convert_to_ids(tokenizer)
# 加载预训练模型
config = PRGCBertConfig.from_pretrained('nghuyong/ernie-1.0',
num_labels=len(re_train_dataset.cat2id))
dl_module = PRGCBert.from_pretrained('nghuyong/ernie-1.0',
config=config)
# 任务构建
num_epoches = 40
batch_size = 16
optimizer = get_default_model_optimizer(dl_module)
model = Task(dl_module, optimizer, None, cuda_device=0)
# 训练
model.fit(re_train_dataset,
re_dev_dataset,
lr=2e-5,
epochs=5,
batch_size=batch_size
)
# 推断
from ark_nlp.model.re.prgc_bert import Predictor
prgc_re_predictor_instance = Predictor(model.module, tokenizer, re_train_dataset.cat2id)
prgc_re_predictor_instance.predict_one_sample(待抽取文本)
|
xiangking |
Jimme |
Zrealshadow |
本项目用于收集和复现学术与工作中常用的NLP模型,整合成方便调用的形式,所以参考借鉴了网上很多开源实现,如有不当的地方,还请联系批评指教。 在此,感谢大佬们的开源实现。