voicefixer_main
1.0.0
2021-11-06:我剛剛更新了代碼結構,以使其更容易理解。現在可能有潛在的錯誤。稍後我將進行一些測試培訓。
2021-11-01:我將更新代碼,並使以後更容易使用。
VoiceFixer是一般語音修復的框架。我們旨在恢復嚴重退化的言論和歷史言論。
# Download dataset and prepare running environment
git clone https://github.com/haoheliu/voicefixer_main.git
cd voicefixer_main
source init.sh 在這裡,我們以vf_unet (以UNET為分析模塊的VoiceFixer)為例子。
# pass in a configuration file to the training script
python3 train_gsr_voicefixer.py -c config/vctk_base_voicefixer_unet.json # you can modify the configuration file to personalize your training您可以查看日誌目錄,以獲取檢查點,日誌記錄和驗證結果。
自動評估和生成所有測試集上的.CSV文件。
例如,如果您想對所有測試集進行評估(默認)。
python3 eval_gsr_voicefixer.py
--config < path-to-the-config-file >
--ckpt < path-to-the-checkpoint > 例如,如果您只想在GSR測試集上評估。
python3 eval_gsr_voicefixer.py
--config < path-to-the-config-file >
--ckpt < path-to-the-checkpoint >
--testset general_speech_restoration
--description general_speech_restoration_eval 通常,您可以將七個測試集傳遞給- 測試:
如果您想評估一小部分數據,例如10話。您可以將數字傳遞給-limit_numbers參數。
python3 eval_gsr_voicefixer.py
--config < path-to-the-config-file >
--ckpt < path-to-the-checkpoint >
--limit_numbers 10 評估結果將在EXP_Results文件夾中介紹。
# pass in a configuration file to the training script
python3 train_gsr_voicefixer.py -c config/vctk_base_voicefixer_unet.json您可以查看日誌目錄,以獲取檢查點,日誌記錄和驗證結果。
python3 eval_ssr_unet.py
--config < path-to-the-config-file >
--ckpt < path-to-the-checkpoint >
--limit_numbers < int-test-only-on-a-few-utterance >
--testset < the-testset-you-want-to-use >
--description < describe-this-test >訓練
# pass in a configuration file to the training script
python3 train_ssr_unet.py -c config/vctk_base_ssr_unet_denoising.json # pass in a configuration file to the training script
python3 train_ssr_unet.py -c config/vctk_base_ssr_unet_dereverberation.json # pass in a configuration file to the training script
python3 train_ssr_unet.py -c config/vctk_base_ssr_unet_super_resolution.json # pass in a configuration file to the training script
python3 train_ssr_unet.py -c config/vctk_base_ssr_unet_declipping.json您可以查看日誌目錄,以獲取檢查點,日誌記錄和驗證結果。
python3 eval_ssr_unet.py
--config < path-to-the-config-file >
--ckpt < path-to-the-checkpoint >
--limit_numbers < int-test-only-on-a-few-utterance >
--testset < the-testset-you-want-to-use >
--description < describe-this-test > @misc { liu2021voicefixer ,
title = { VoiceFixer: Toward General Speech Restoration With Neural Vocoder } ,
author = { Haohe Liu and Qiuqiang Kong and Qiao Tian and Yan Zhao and DeLiang Wang and Chuanzeng Huang and Yuxuan Wang } ,
year = { 2021 } ,
eprint = { 2109.13731 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.SD }
}

