voicefixer_main
1.0.0
2021-11-06:我刚刚更新了代码结构,以使其更容易理解。现在可能有潜在的错误。稍后我将进行一些测试培训。
2021-11-01:我将更新代码,并使以后更容易使用。
VoiceFixer是一般语音修复的框架。我们旨在恢复严重退化的言论和历史言论。
# Download dataset and prepare running environment
git clone https://github.com/haoheliu/voicefixer_main.git
cd voicefixer_main
source init.sh 在这里,我们以vf_unet (以UNET为分析模块的VoiceFixer)为例子。
# pass in a configuration file to the training script
python3 train_gsr_voicefixer.py -c config/vctk_base_voicefixer_unet.json # you can modify the configuration file to personalize your training您可以查看日志目录,以获取检查点,日志记录和验证结果。
自动评估和生成所有测试集上的.CSV文件。
例如,如果您想对所有测试集进行评估(默认)。
python3 eval_gsr_voicefixer.py
--config < path-to-the-config-file >
--ckpt < path-to-the-checkpoint > 例如,如果您只想在GSR测试集上评估。
python3 eval_gsr_voicefixer.py
--config < path-to-the-config-file >
--ckpt < path-to-the-checkpoint >
--testset general_speech_restoration
--description general_speech_restoration_eval 通常,您可以将七个测试集传递给- 测试:
如果您想评估一小部分数据,例如10话。您可以将数字传递给-limit_numbers参数。
python3 eval_gsr_voicefixer.py
--config < path-to-the-config-file >
--ckpt < path-to-the-checkpoint >
--limit_numbers 10 评估结果将在EXP_Results文件夹中介绍。
# pass in a configuration file to the training script
python3 train_gsr_voicefixer.py -c config/vctk_base_voicefixer_unet.json您可以查看日志目录,以获取检查点,日志记录和验证结果。
python3 eval_ssr_unet.py
--config < path-to-the-config-file >
--ckpt < path-to-the-checkpoint >
--limit_numbers < int-test-only-on-a-few-utterance >
--testset < the-testset-you-want-to-use >
--description < describe-this-test >训练
# pass in a configuration file to the training script
python3 train_ssr_unet.py -c config/vctk_base_ssr_unet_denoising.json # pass in a configuration file to the training script
python3 train_ssr_unet.py -c config/vctk_base_ssr_unet_dereverberation.json # pass in a configuration file to the training script
python3 train_ssr_unet.py -c config/vctk_base_ssr_unet_super_resolution.json # pass in a configuration file to the training script
python3 train_ssr_unet.py -c config/vctk_base_ssr_unet_declipping.json您可以查看日志目录,以获取检查点,日志记录和验证结果。
python3 eval_ssr_unet.py
--config < path-to-the-config-file >
--ckpt < path-to-the-checkpoint >
--limit_numbers < int-test-only-on-a-few-utterance >
--testset < the-testset-you-want-to-use >
--description < describe-this-test > @misc { liu2021voicefixer ,
title = { VoiceFixer: Toward General Speech Restoration With Neural Vocoder } ,
author = { Haohe Liu and Qiuqiang Kong and Qiao Tian and Yan Zhao and DeLiang Wang and Chuanzeng Huang and Yuxuan Wang } ,
year = { 2021 } ,
eprint = { 2109.13731 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.SD }
}

