LLM_Legal_Prompt_Generation
1.0.0
该存储库包含论文“ LLMS的相关数据和代码 - 好,坏或不可或缺的?
这是目录树。
LLM_Legal_Prompt_Generation
├── Judgment Prediction
│ ├── LLM
│ │ ├── Codes
│ │ │ ├── jp.py
│ │ │ ├── jpe.py
│ │ ├── Datasets
│ │ │ ├── JP.csv
│ │ │ ├── JPE.csv
│ │ │ ├── JPE_with_pet_res.csv
│ │ │ ├── JP_with_pet_res.csv
│ │ ├── readme.md
│ ├── Transformer based Models
│ │ ├── Codes
│ │ │ ├── Evalution on ILDC expert dataset.ipynb
│ │ │ ├── Legal_judgment_training_with_transformers.py
│ │ ├── Datasets
│ │ │ ├── readme.md
│ ├── surname_wordlist
│ │ ├── hindu_surname_file.txt
│ │ ├── muslim_surname_file.txt
├── Statute Prediction
│ ├── Baseline Models
│ │ ├── data_generator.py
│ │ ├── evaluate.py
│ │ ├── metrics.py
│ │ ├── train.py
│ │ ├── utils.py
│ │ ├── Model
│ │ │ ├── Multi-label Classification
│ │ │ │ ├── net.py
│ │ │ ├── Binary Classification
│ │ │ │ ├── net.py
│ │ ├── Experiments
│ │ │ ├── params
│ │ │ │ ├── params_inlegalbert.json
│ │ │ │ ├── params_legalbert.json
│ │ │ │ ├── params_xlnet.json
│ ├── LLM
│ │ ├── Codes
│ │ │ ├── ALL TASK CODE.ipynb
│ │ │ ├── ALL TASK CODE.py
│ │ ├── Datasets
│ │ │ ├── 13_Cases_Gender and Bias Prediction_with explanations.csv
│ │ │ ├── 245cases.csv
│ │ │ ├── Gender and Religion Bias cases.csv
│ │ │ ├── query.csv
│ │ │ ├── statute_pred_100_cases_without_exp-gender_religion_bias.csv
│ │ │ ├── statute_pred_100_cases_without_exp.csv
│ │ │ ├── statute_pred_45_cases_with_exp.csv
│ │ │ ├── statute_pred_45_cases_without_exp.csv
│ │ ├── readme.md
├── README.md
大型语言模型(LLM)影响了许多现实生活任务。为了检查LLM在像法律这样的高风险领域的功效,我们已将最先进的LLMS应用于两项流行的任务:对印度最高法院案件的法规预测和判断预测。我们看到,尽管LLM在法规预测中表现出出色的预测性能,但与许多标准模型相比,它们的绩效下降。 LLMS(以及预测)产生的解释具有中等至不错的质量。我们还看到LLM预测结果中性别和宗教偏见的证据。此外,我们还提供了一位高级法律专家的注释,内容涉及在这些关键法律任务中部署LLM的道德问题。
Shaurya Vats,Atharva Zope,Somsubhra de,Anurag Sharma,Apal Bhattacharya,Shubham Kumar Nigam,Shouvik Kumar Guha,Koustav Rudra,Kripabandhu Ghosh
@inproceedings{vats-etal-2023-llms,
title = "{LLM}s {--} the Good, the Bad or the Indispensable?: A Use Case on Legal Statute Prediction and Legal Judgment Prediction on {I}ndian Court Cases",
author = "Vats, Shaurya and
Zope, Atharva and
De, Somsubhra and
Sharma, Anurag and
Bhattacharya, Upal and
Nigam, Shubham and
Guha, Shouvik and
Rudra, Koustav and
Ghosh, Kripabandhu",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.831",
pages = "12451--12474",
abstract = "The Large Language Models (LLMs) have impacted many real-life tasks. To examine the efficacy of LLMs in a high-stake domain like law, we have applied state-of-the-art LLMs for two popular tasks: Statute Prediction and Judgment Prediction, on Indian Supreme Court cases. We see that while LLMs exhibit excellent predictive performance in Statute Prediction, their performance dips in Judgment Prediction when compared with many standard models. The explanations generated by LLMs (along with prediction) are of moderate to decent quality. We also see evidence of gender and religious bias in the LLM-predicted results. In addition, we present a note from a senior legal expert on the ethical concerns of deploying LLMs in these critical legal tasks.",
}
请随时将您的查询或问题写给kripaghosh[at]iiserkol[dot]ac[dot]in 。