Этот репозиторий содержит соответствующие данные и коды для документа «LLMS - Good, The Bad или The Edmancemble?: Пример использования по прогнозированию юридического закона и прогнозировании юридических решений по делам индийских судебных дел», принятых на выводы конференции EMNLP 2023.
Вот дерево каталогов.
LLM_Legal_Prompt_Generation
├── Judgment Prediction
│ ├── LLM
│ │ ├── Codes
│ │ │ ├── jp.py
│ │ │ ├── jpe.py
│ │ ├── Datasets
│ │ │ ├── JP.csv
│ │ │ ├── JPE.csv
│ │ │ ├── JPE_with_pet_res.csv
│ │ │ ├── JP_with_pet_res.csv
│ │ ├── readme.md
│ ├── Transformer based Models
│ │ ├── Codes
│ │ │ ├── Evalution on ILDC expert dataset.ipynb
│ │ │ ├── Legal_judgment_training_with_transformers.py
│ │ ├── Datasets
│ │ │ ├── readme.md
│ ├── surname_wordlist
│ │ ├── hindu_surname_file.txt
│ │ ├── muslim_surname_file.txt
├── Statute Prediction
│ ├── Baseline Models
│ │ ├── data_generator.py
│ │ ├── evaluate.py
│ │ ├── metrics.py
│ │ ├── train.py
│ │ ├── utils.py
│ │ ├── Model
│ │ │ ├── Multi-label Classification
│ │ │ │ ├── net.py
│ │ │ ├── Binary Classification
│ │ │ │ ├── net.py
│ │ ├── Experiments
│ │ │ ├── params
│ │ │ │ ├── params_inlegalbert.json
│ │ │ │ ├── params_legalbert.json
│ │ │ │ ├── params_xlnet.json
│ ├── LLM
│ │ ├── Codes
│ │ │ ├── ALL TASK CODE.ipynb
│ │ │ ├── ALL TASK CODE.py
│ │ ├── Datasets
│ │ │ ├── 13_Cases_Gender and Bias Prediction_with explanations.csv
│ │ │ ├── 245cases.csv
│ │ │ ├── Gender and Religion Bias cases.csv
│ │ │ ├── query.csv
│ │ │ ├── statute_pred_100_cases_without_exp-gender_religion_bias.csv
│ │ │ ├── statute_pred_100_cases_without_exp.csv
│ │ │ ├── statute_pred_45_cases_with_exp.csv
│ │ │ ├── statute_pred_45_cases_without_exp.csv
│ │ ├── readme.md
├── README.md
Большие языковые модели (LLMS) повлияли на многие реальные задачи. Чтобы изучить эффективность LLMS в области высокого прихода, такой как закон, мы применили современные LLM для двух популярных задач: прогноз законов и прогноз суждения , по делам Верховного суда Индии. Мы видим, что, хотя LLM демонстрируют превосходную прогнозирующую производительность в прогнозировании закона, их производительность в прогнозировании суждения по сравнению со многими стандартными моделями. Объяснения, генерируемые LLMS (наряду с прогнозом), имеют качество от умеренного или достойного. Мы также видим доказательства гендерного и религиозного предвзятости в результатах LLM. Кроме того, мы представляем примечание от старшего юридического эксперта по этическим проблемам развертывания LLM в этих критических юридических задачах.
Shaurya Vats, Atharva Zope, Somsubhra de, Anurag Sharma, Upal Bhattacharya, Shubham Kumar Nigam, Shouvik Kumar Guha, Koustav Rudra, Kripabandhu Ghosh
@inproceedings{vats-etal-2023-llms,
title = "{LLM}s {--} the Good, the Bad or the Indispensable?: A Use Case on Legal Statute Prediction and Legal Judgment Prediction on {I}ndian Court Cases",
author = "Vats, Shaurya and
Zope, Atharva and
De, Somsubhra and
Sharma, Anurag and
Bhattacharya, Upal and
Nigam, Shubham and
Guha, Shouvik and
Rudra, Koustav and
Ghosh, Kripabandhu",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.831",
pages = "12451--12474",
abstract = "The Large Language Models (LLMs) have impacted many real-life tasks. To examine the efficacy of LLMs in a high-stake domain like law, we have applied state-of-the-art LLMs for two popular tasks: Statute Prediction and Judgment Prediction, on Indian Supreme Court cases. We see that while LLMs exhibit excellent predictive performance in Statute Prediction, their performance dips in Judgment Prediction when compared with many standard models. The explanations generated by LLMs (along with prediction) are of moderate to decent quality. We also see evidence of gender and religious bias in the LLM-predicted results. In addition, we present a note from a senior legal expert on the ethical concerns of deploying LLMs in these critical legal tasks.",
}
Не стесняйтесь писать свои вопросы или вопросы kripaghosh[at]iiserkol[dot]ac[dot]in .