Ce référentiel contient les données et les codes pertinents pour le document «LLMS - le bien, le mauvais ou l'insispensable?
Voici un arbre d'annuaire.
LLM_Legal_Prompt_Generation
├── Judgment Prediction
│ ├── LLM
│ │ ├── Codes
│ │ │ ├── jp.py
│ │ │ ├── jpe.py
│ │ ├── Datasets
│ │ │ ├── JP.csv
│ │ │ ├── JPE.csv
│ │ │ ├── JPE_with_pet_res.csv
│ │ │ ├── JP_with_pet_res.csv
│ │ ├── readme.md
│ ├── Transformer based Models
│ │ ├── Codes
│ │ │ ├── Evalution on ILDC expert dataset.ipynb
│ │ │ ├── Legal_judgment_training_with_transformers.py
│ │ ├── Datasets
│ │ │ ├── readme.md
│ ├── surname_wordlist
│ │ ├── hindu_surname_file.txt
│ │ ├── muslim_surname_file.txt
├── Statute Prediction
│ ├── Baseline Models
│ │ ├── data_generator.py
│ │ ├── evaluate.py
│ │ ├── metrics.py
│ │ ├── train.py
│ │ ├── utils.py
│ │ ├── Model
│ │ │ ├── Multi-label Classification
│ │ │ │ ├── net.py
│ │ │ ├── Binary Classification
│ │ │ │ ├── net.py
│ │ ├── Experiments
│ │ │ ├── params
│ │ │ │ ├── params_inlegalbert.json
│ │ │ │ ├── params_legalbert.json
│ │ │ │ ├── params_xlnet.json
│ ├── LLM
│ │ ├── Codes
│ │ │ ├── ALL TASK CODE.ipynb
│ │ │ ├── ALL TASK CODE.py
│ │ ├── Datasets
│ │ │ ├── 13_Cases_Gender and Bias Prediction_with explanations.csv
│ │ │ ├── 245cases.csv
│ │ │ ├── Gender and Religion Bias cases.csv
│ │ │ ├── query.csv
│ │ │ ├── statute_pred_100_cases_without_exp-gender_religion_bias.csv
│ │ │ ├── statute_pred_100_cases_without_exp.csv
│ │ │ ├── statute_pred_45_cases_with_exp.csv
│ │ │ ├── statute_pred_45_cases_without_exp.csv
│ │ ├── readme.md
├── README.md
Les grands modèles de langue (LLM) ont eu un impact sur de nombreuses tâches réelles. Pour examiner l'efficacité des LLM dans un domaine à haut débit, nous avons appliqué des LLM de pointe pour deux tâches populaires: prédiction des statuts et prédiction du jugement , sur les affaires de la Cour suprême indienne. Nous voyons que même si les LLM présentent d'excellentes performances prédictives dans la prédiction des statuts, leurs performances diminuent dans la prédiction du jugement par rapport à de nombreux modèles standard. Les explications générées par les LLM (ainsi que la prédiction) sont de qualité modérée à décente. Nous voyons également des preuves de sexe et de biais religieux dans les résultats prédits au LLM. De plus, nous présentons une note d'un expert juridique principal sur les préoccupations éthiques de déploiement des LLM dans ces tâches juridiques critiques.
Shaurya Vats, Atharva Zope, Somsubhra de, Anurag Sharma, Upal Bhattacharya, Shubham Kumar Nigam, Shouvik Kumar Guha, Koustav Rudra, Kripabandhu Ghosh
@inproceedings{vats-etal-2023-llms,
title = "{LLM}s {--} the Good, the Bad or the Indispensable?: A Use Case on Legal Statute Prediction and Legal Judgment Prediction on {I}ndian Court Cases",
author = "Vats, Shaurya and
Zope, Atharva and
De, Somsubhra and
Sharma, Anurag and
Bhattacharya, Upal and
Nigam, Shubham and
Guha, Shouvik and
Rudra, Koustav and
Ghosh, Kripabandhu",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.831",
pages = "12451--12474",
abstract = "The Large Language Models (LLMs) have impacted many real-life tasks. To examine the efficacy of LLMs in a high-stake domain like law, we have applied state-of-the-art LLMs for two popular tasks: Statute Prediction and Judgment Prediction, on Indian Supreme Court cases. We see that while LLMs exhibit excellent predictive performance in Statute Prediction, their performance dips in Judgment Prediction when compared with many standard models. The explanations generated by LLMs (along with prediction) are of moderate to decent quality. We also see evidence of gender and religious bias in the LLM-predicted results. In addition, we present a note from a senior legal expert on the ethical concerns of deploying LLMs in these critical legal tasks.",
}
N'hésitez pas à rédiger vos questions ou vos questions à kripaghosh[at]iiserkol[dot]ac[dot]in .