GRAD
1.0.0
这是用于复制Grad的关键结果的代码:文本图上的图形感知蒸馏。

请前往GradBERT或GradMLP以获取更多说明。
运行代码的依赖项在requirements.txt文件中。
我们还遵循[巨人]的安装过程。
首先让我们设置一个环境
conda create -n " grad " python=3.8
conda activate grad接下来,我们安装pytorch:
conda install pytorch==1.9.0 cudatoolkit=10.2 -c pytorch
# check the pytorch version and cuda availability
python -c " import torch; print('torch={}, cuda={}'.format(torch.__version__, torch.cuda.is_available())) "Finall,我们安装了GNN相关软件包
ptcu_version= " 1.9.0+cu102 "
pip install torch-scatter -f " https://pytorch-geometric.com/whl/torch- ${ptcu_version} .html "
pip install torch-sparse -f " https://pytorch-geometric.com/whl/torch- ${ptcu_version} .html "
pip install torch-cluster -f " https://pytorch-geometric.com/whl/torch- ${ptcu_version} .html "
pip install torch-spline-conv -f " https://pytorch-geometric.com/whl/torch- ${ptcu_version} .html "
pip install torch-geometric
pip install ogb==1.3.2
# our ogb version is 1.3.2
python -c " import ogb; from ogb.graphproppred import PygGraphPropPredDataset; print(ogb.__version__) " 请从此链接下载预训练的Gradbert节点嵌入https://drive.google.com/drive/folders/1tol67yewyewyogusf4t2qwrds-hbhbg-icx?usp = sharing并在此文件夹中提取它们。请确保提取的文件夹具有此基结构GradBERT/embeddings/ogbn-*/ 。
然后,您可以使用ogbn-arxiv或ogbn-products文件夹,并运行相应的sh命令,以重现OGB排行榜的Gradbert结果。
在下面,您可以找到脚本来复制关键结果。
./GRAD
| ---- GradBERT/ # OGB datasets
| | ---- embeddings/
| | ---- ogbn-arxiv/
| | | ---- gradbert_mlp.sh # MLP with GradBERT feats
| | | ---- gradbert_sage.sh # SAGE with GradBERT feats
| | | ---- RevGAT-ori
| | ---- gradbert_RevGAT_ogbnarxiv.sh # RevGAT with GradBERT feats
| | ---- ogbn-products/
| | | ---- gradbert_mlp.sh # MLP with GradBERT feats
| | | ---- gradbert_giant_sage.sh # SAGE with GradBERT+GIANT feats
| | | ---- SAGN_with_SLE
| | ---- Runexp_SAGN_SLE_ogbnproducts_morestages.sh # SAGN_SLE with GradBERT+GIANT feats
| ---- GradMLP/ # CPF data from GLNN
| | ---- experiments/
| | | ---- cora_gradmlp.sh
| | | ---- cora_gradmlp_kd.sh
| | | ---- etc.
Please go to ` GradBERT ` or ` GradMLP ` for more details.