reliability checklist
v0.1.0
pip install git+https://github.com/Maitreyapatel/reliability-checklist
python -m spacy download en_core_web_sm
python -c " import nltk;nltk.download('wordnet') "用默认配置评估示例模型/数据
# eval on CPU
recheck
# eval on GPU
recheck trainer=gpu +trainer.gpus=[1,2,3]通过选择的数据集特定实验配置从Reliaper_checklist/configs/task/task/
recheck tasl= < task_name >指定自定义model_name,如下MNLI示例所示
# if model_name is used for tokenizer as well.
recheck task=mnli custom_model= " bert-base-uncased-mnli "
# if model_name is different for tokenizer then
recheck task=mnli custom_model= " bert-base-uncased-mnli " custom_model.tokenizer.model_name= " ishan/bert-base-uncased-mnli " # create config folder structure similar to reliability_checklist/configs/
mkdir ./configs/
mkdir ./configs/custom_model/
# run following command after creating new config file inside ./configs/custom_model/<your-config>.yaml
recheck task=mnli custom_model= < your-config >reliability-checklist支持广泛的可视化工具。可以决定使用默认的Wandb在线可视化器。它还生成了非常有用的图,这些图将存储在logs目录中。

reliability-checklist欢迎任何积极的贡献!请通过为该项目做出贡献来帮助我们成长。
如果您想贡献,则可以处理此处列出的任何功能/问题,也可以自己创建一个功能/问题。添加代码后,请向我们发送拉动请求。
请阅读有关我们的
CODE OF CONDUCTCONTRIBUTING信息以及向我们提交拉的请求的过程的详细信息。