ResNeSt
1.0.0
分裂注意网络,一种新的重新网络变体。它显着提高了下游模型的性能,例如蒙版R-CNN,级联R-CNN和DeepLabV3。

# using github url
pip install git+https://github.com/zhanghang1989/ResNeSt
# using pypi
pip install resnest --pre| 作物大小 | Pytorch | gluon | |
|---|---|---|---|
| Resnest-50 | 224 | 81.03 | 81.04 |
| Resnest-101 | 256 | 82.83 | 82.81 |
| Resnest-200 | 320 | 83.84 | 83.88 |
| Resnest-269 | 416 | 84.54 | 84.53 |
可用第三方实施:Tensorflow,Caffe,Jax。
链接中有额外的消融研究模型
import torch
# get list of models
torch . hub . list ( 'zhanghang1989/ResNeSt' , force_reload = True )
# load pretrained models, using ResNeSt-50 as an example
net = torch . hub . load ( 'zhanghang1989/ResNeSt' , 'resnest50' , pretrained = True ) # using ResNeSt-50 as an example
from resnest . torch import resnest50
net = resnest50 ( pretrained = True ) # using ResNeSt-50 as an example
from resnest . gluon import resnest50
net = resnest50 ( pretrained = True )我们为训练检测模型提供了包装纸,并在D2处具有重新骨干。释放培训配置和预告片的模型。请参阅D2中的详细信息。
MMDetection已采用重新骨干。
注意:本文中报告的推理速度使用带有Recordio数据的Gluon实现进行了测试。
在这里,我们使用原始图像数据格式为简单起见,如果您想使用Recordio格式,请关注GluonCV教程。
cd scripts/dataset/
# assuming you have downloaded the dataset in the current folder
python prepare_imagenet.py --download-dir ./ # use resnest50 as an example
cd scripts/torch/
python verify.py --model resnest50 --crop-size 224 # use resnest50 as an example
cd scripts/gluon/
python verify.py --model resnest50 --crop-size 224有关对象检测和实例细分模型,请访问我们的destectron2-Resnest fork。
Resnest:分裂注意网络[ARXIV]
Hang Zhang,Chongruo Wu,Zhongyue Zhang,Yi Zhu,Zhi Zhang,Haibin Lin,Yue Sun,Tong He,Jonas Muller,R。Manmatha,Mu Li和Alex Smola
@article{zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint arXiv:2004.08955},
year={2020}
}