Jaringan split-attention, varian resnet baru. Ini secara signifikan meningkatkan kinerja model hilir seperti topeng R-CNN, Cascade R-CNN dan DEEPLABV3.

# using github url
pip install git+https://github.com/zhanghang1989/ResNeSt
# using pypi
pip install resnest --pre| Ukuran tanaman | Pytorch | Gluon | |
|---|---|---|---|
| Resnest-50 | 224 | 81.03 | 81.04 |
| Resnest-101 | 256 | 82.83 | 82.81 |
| Resnest-200 | 320 | 83.84 | 83.88 |
| Resnest-269 | 416 | 84.54 | 84.53 |
Implementasi pihak ke -3 tersedia: TensorFlow, Caffe, Jax.
Model studi ablasi tambahan tersedia di tautan
import torch
# get list of models
torch . hub . list ( 'zhanghang1989/ResNeSt' , force_reload = True )
# load pretrained models, using ResNeSt-50 as an example
net = torch . hub . load ( 'zhanghang1989/ResNeSt' , 'resnest50' , pretrained = True ) # using ResNeSt-50 as an example
from resnest . torch import resnest50
net = resnest50 ( pretrained = True ) # using ResNeSt-50 as an example
from resnest . gluon import resnest50
net = resnest50 ( pretrained = True )Kami menyediakan pembungkus untuk pelatihan model Detectron2 dengan tulang punggung resnest di D2. Konfigurasi pelatihan dan model pretrain dirilis. Lihat detail di D2.
Tulang punggung resnest telah diadopsi oleh MMDetection.
Catatan: Kecepatan inferensi yang dilaporkan dalam makalah diuji menggunakan implementasi Gluon dengan data Recordio.
Di sini kami menggunakan format data gambar mentah untuk kesederhanaan, silakan ikuti tutorial Gluoncv jika Anda ingin menggunakan format Recordio.
cd scripts/dataset/
# assuming you have downloaded the dataset in the current folder
python prepare_imagenet.py --download-dir ./ # use resnest50 as an example
cd scripts/torch/
python verify.py --model resnest50 --crop-size 224 # use resnest50 as an example
cd scripts/gluon/
python verify.py --model resnest50 --crop-size 224Untuk deteksi objek dan model segmentasi instan, silakan kunjungi detectron2-resnest fork kami.
Resnest: jaringan split-attention [arxiv]
Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Muller, R. Manmatha, Mu Li dan Alex Smola
@article{zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint arXiv:2004.08955},
year={2020}
}