
NVIDIA Kaolin library provides a PyTorch API for working with a variety of 3D representations and includes a growing collection of GPU-optimized operations such as modular differentiable rendering, fast conversions between representations, data loading, 3D checkpoints, differentiable camera API, differentiable lighting with spherical harmonics and spherical gaussians, powerful quadtree acceleration structure called Structured Point Clouds, interactive 3D visualizer for Jupyter笔记本电脑,方便的批处理网状容器等。访问高岭土图书馆文档以开始!
请注意,高岭土图书馆是为3D深度学习而更大的Nvidia高岭土努力的一部分。
从v0.12.0开始,高岭土支持用轮子安装:
# Replace TORCH_VERSION and CUDA_VERSION with your torch / cuda versions
pip install kaolin==0.17.0 -f https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-{TORCH_VERSION}_cu{CUDA_VERSION}.html
例如,在Torch 2.0.1和Cuda 11.8上安装高岭土0.17.0:
pip install kaolin==0.17.0 -f https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-2.0.1_cu118.html
在此版本中,我们添加了用于“致密”高斯夹层的sample_points_in_volume函数,可用于改善物理模拟。
我们在我们的某些功能上使用NVIDIA经线进一步改善了物理培训和模拟。我们还增加了对GLTF加载器中传输的支持。
![]() | ![]() |
|---|---|
| 没有密码 | 带有密码 |
检查我们更新的教程:
有关详细信息,请参见更改日志。
请查看我们的贡献指南。
Kaolin的大多数存储库都属于Apache v2.0许可证,但根据Kaolin/Non_ -Commercial的NSCL许可,仅用于研究和评估目的的非商业用途。例如,flexicubes方法包含在non_ -cmercialsion下。
默认kaolin导入包括Apache许可的组件:
import kaolin
非商业组件需要明确导入为:
import kaolin.non_commercial
如果您正在使用高岭土图书馆进行研究,请引用:
@software{KaolinLibrary,
author = {Fuji Tsang, Clement and Shugrina, Maria and Lafleche, Jean Francois and Perel, Or and Loop, Charles and Takikawa, Towaki and Modi, Vismay and Zook, Alexander and Wang, Jiehan and Chen, Wenzheng and Shen, Tianchang and Gao, Jun and Jatavallabhula, Krishna Murthy and Smith, Edward and Rozantsev, Artem and Fidler, Sanja and State, Gavriel and Gorski, Jason and Xiang, Tommy and Li, Jianing and Li, Michael and Lebaredian, Rev},
title = {Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research},
date = {2024-11-20},
version = {0.17.0},
url={url{https://github.com/NVIDIAGameWorks/kaolin}}
}
当前团队:
其他专业的贡献者: