Awesome Story Generation
1.0.0
由于语义学者API的局限性,我们无法在此存储库中显示所有论文的引用计数。
我们专注于显示所有LLMS时代论文和一些早期影响的论文的引文计数。
在这里,“有影响力的”是指超过50个引用的论文。
该存储库收集了有关故事发电/讲故事的精彩论文清单,主要关注大型语言模型(LLMS)的时代。
所有论文均按时间顺序排序,最近的论文出现在顶部。
由于能量和时间有限,可能存在遗漏和错误。如果您注意到任何问题或错误,请随时打开问题或提交PRS!
如果您有任何建议或疑问,请随时与我联系:
mayingpeng33 [AT] gmail [DOT] com
例如。 ACL-2023标题[Paper] [Code] .. [作者]
CHI-2024在写作[论文] [Zhuoyan Li,Chen Liang,Jing Peng,Ming Yin]中的价值,利益和关注EMNLP-2023创意自然语言生成[Paper] [Tuhin Chakrabarty,Vishakh Padmakumar,He He,Nanyun Peng]Neurocomputing-2023开放世界的故事生成具有结构性知识增强:一项全面的调查[论文] [Yuxin Wang,Jieru Lin,Zhiwei Yu,Wei Hu,BörjeF。Karlsson]WNU-2022无法讲故事的语言模型有什么问题? [纸] [Ivan P. Yamshchikov,Alexey Tikhonov]ACM Computing Surveys-2021自动故事生成[Paper] [Arwa I. Alhussain,Aqil M. Azmi]NUSE-2021自动故事生成:挑战和尝试[纸] [Amal Alabdulkarim,Siyan Li,Xiangyu Peng]EACL-2024创建悬念故事:具有大语言模型的迭代计划[纸] [Kaige Xie,Mark Riedl]Arxiv-2024赃物:与动作指导的讲故事[Paper] [Zeeshan Patel,Karim El-Refai,Jonathan Pei,Tianle Li]Arxiv-2024 Weaver:创意写作的基础模型[纸] [Tiannan Wang,Jiamin Chen,Qingrui Jia,Shuai Wang,Ruoyu Fang,...,Yuchen Eleanor Jiang,Wangchunshu Zhou]]ArXiv-2023 Autoagents:自动代理生成的框架[Paper] [Guangyao Chen,Siwei Dong,Yu Shu,Ge Zhang,Jaward Sesay,BörjeF。Karlsson,Jie Fu,Yemin Shi]ArXiv-2023 Recurrentgpt:(任意)长文本的交互生成[Paper] [Code] [Wangchunshu Zhou,Yuchen Eleanor Jiang,Peng Cui,Pennan Wang,Zhenxin Xiao,Yifan Xiao,Yifan Hou,Ryan Cotterell,Ryan Cotterell,Mrinmaya sachan sachan]]Stanford CS224N Custom Project-2023新颖性:为新剧情生成的溪流优化[Paper] [乔伊斯·陈(Joyce Chen),梅根·穆(Megan Mou)]ArXiv-2023最终故事情节生成器[Paper] [Hanlin Zhu,Andrew Cohen,Danqing Wang,Kevin Yang,Xiaomeng Yang,Jiantao Jiao,Yuandong Tian]AAAI Workshop-2023将预测未来传达给用户:故事情节预测的案例研究[Paper] [Chieh-Yang Huang,Saniya Naphade,Kavya Laalasa Karanam,Ting-Hao'Kenneth'Huang'Huang]]RANLP-2023结构化知识相干故事[Paper] [Congda Ma,Kotaro Funakoshi,Kiyoaki Shirai,Manabu Okumura]EMNLP-2022 ETRICA:事件触发的上下文感知的故事产生被交叉注意的增强[Paper] [Chen Tang,Chenghua Lin,Henglin Huang,Frank Guerin,Zhihao Zhang]INLG-2022绘图绘制来自预训练的语言模型[Paper] [Yiping Jin,Vishakha Kadam,Dittaya Wanvarie]AAAI-2020故事实现:将情节事件扩展到句子[Paper] [Code] [Prithviraj Ammanabrolu,Ethan Tien,Wesley Cheung,Zhaochen Luo,William MA,Lara J. Martin,Mark O. Riedl]ArXiv-2024有更大的必要性:推理时间培训有助于长期文本[纸] [Y.。 Wang,D。Ma,D。Cai]PAKDD-2024 Longstory:连贯,完整和长度受控的长篇小说一代[Paper] [Kyeongman Park,Nakyeong Yang,Kyomin Jung]EMNLP Findings-2023情感和动态光束搜索故事的生成[Paper] [Tenghao Huang,Ehsan Qasemi,Bangzheng Li,Wang,Faeze Brahman,Muhao Chen,Snigdha Chaturvedi]EMNLP Findings-2023 Grove:一个带有证据森林的检索型复杂的故事生成框架[Paper] [Zhihua Wen,Zhiliang Tian,Wei Wu,Yuxin Yang,Yuxin Yang,Yanqi Shi,Zhen shi,Zhen Huang,dongsheng Li]ACL-2023通过蒙版语言建模[Paper] [Xiaobo Liang,Zecheng Tang,Juntao LI,Min Zhang]开放式长文本生成[Paper]ArXiv-2022未来的视觉:具有大型语言模型的动态故事[论文] [Brian D. Zimmerman,Gaurav Sahu,Olga Vechtomova]ACL Workshop-2022相干的长文本生成柔软的提示[纸] [Guandan Chen,Jiashu PU,Yadong XI,Rongsheng Zhang]AACL-2022通过认识句法依赖性和语义的意识[Paper] [Henglin Huang,Chen Tang,Tyler Loakman,Frank Guerin,Chenghua Lin],改善了中国故事的产生。AAAI-2022通过学习动态和离散的实体来产生连贯的叙事[纸] [纸]PhD Thesis-2022巨大的期望:讲故事的无监督,惊喜和显着性的推论[纸] [David Wilmot]NAACL-2022返回时代:与事件临时提示中产生闪回[Paper] [Rujun Han,Hong Chen,Yufei Tian,Nanyun Peng]ACL Findings-2022开放式文本生成的事件过渡计划[Paper] [Qintong Li,Piji Li,Wei Bi,Zhaochun Ren,Yuxuan Lai,Lingpeng Kong]ICASSP-2022 CLSEG:故事结束一代的对比度学习[论文] [Yuqiang Xie,Yue Hu,Luxi Xing,Yunpeng Li,Wei Peng,Ping Guo]ICML-2022在叙事一代中连贯且一致地使用实体[Paper] [Pinelopi Papalampidi,Kris Cao,Tomas Kocisky]EMNLP Findings-2021指导神经故事产生读者模型[Paper] [Xiangyu Peng,Kaige Xie,Amal Alabdulkarim,Harshith Kayam,Samihan Dani,Mark O. Riedl]ArXiv-2021目标导向故事生成:通过增强学习的增强生成语言模型[论文] [Amal Alabdulkarim,Winston Li,Lara J. Martin,Mark O. Riedl]ArXiv-2021自动故事生成作为提问[Paper] [Louis Castricato,Spencer Frazier,Jonathan Balloch,Nitya Tarakad,Mark Riedl]ACL-2021通过建模句子级别和话语级连贯性[Paper] [Jian Guan,Xiaoxi Mao,Changjie Fan,Zitao Liu,Wenbiao ding,Minlie Huang]AACL-2020提示我:互动故事的诱导方法[Paper] [Faeze Brahman,Alexandru Petrusca,Snigdha Chaturvedi]FDG-2024 Storyverse:通过叙事计划[Paper] [Yi Wang,Qian Zhou,David Ledo]与基于LLM的角色模拟共同建立动态情节。ArXiv-2024大语言模型不足:了解侦探叙事中的复杂关系[论文] [Runcong Zhao,Qinglin Zhu,Hainiu Xu,Jiazheng LI,Yuxiang Zhou,Yulan He,Lin Gui],Lin Gui]EMNLP-2022朝着与特征间关系驱动的故事产生[Paper] [Anveh Rao Vijjini,Faeze Brahman,Snigdha Chaturvedi]COLING-2022 Chae:具有角色,动作和情感的细粒度可控故事[Paper] [Xinpeng Wang,Han Jiang,Zhihua Wei,Shanlin Zhou]ArXiv-2022是理解和在故事中的角色之间对话的基准[纸] [Jianzhu Yao,Ziqi Liu,Jian Guan,Minlie Huang]ECML/PKDD-2022一种离子交换机制启发了不同角色的故事结束生成器[Paper] [Xinyu Jiang,Qi Zhang,Chongyang Shi,Kaiying Jiang,Liang Hu,Shoujin Wang]NAACL-2022角色指导的计划,用于控制主角的角色[论文] [code] [Zhexin Zhang,Jiaxin Wen,Jian Guan,Minlie Huang]ACL-2021与背景故事无监督的角色接地对话[Paper] [Bodhisattwa Prasad Majumder,Taylor Berg-Kirkpatrick,Julian McAuley,Harsh Jhamtani]SIGDIAL-2021通过建模角色关系[Paper] [Wai Man Si,Prithviraj Ammanabrolu,Mark O. Riedl],通过多用户对话来讲述故事ArXiv-2024 CAT-LLM:提示具有文本样式的大型语言模型,用于中文文章式转移[Paper] [Zhen Tao,Dinghao XI,Zhiyu Li,Liumin Tang,Wei Xu]ArXiv-2023学习以任意写作风格生成文本[Paper] [Aleem Khan,Andrew Wang,Sophia Hager,Nicholas Andrews]ACL-2023故事发行:非平行故事作者风格的转移,具有演讲表示和内容增强[Paper] [Xuekai Zhu,Jian Guan,Minlie Huang,Juan Liu]ACL-2021风格的故事产生风格指导计划[Paper] [Xiangzhe Kong,Jialiang Huang,Ziquan Tung,Jian Guan,Minlie Huang]ACL-2020故事级文本样式转移:建议[纸] [Yusu Qian]ArXiv-2024浏览写作道路:大型语言模型的概述引导文本一代[Paper] [Yukyung Lee,Sonowwon KA,Bokyung儿子,Pilsung Kang,Jaewook Kang]EMNLP Findings-2023在长篇故事计划中改善节奏[Paper] [Yichen Wang,Kevin Yang,小刘,Dan Klein]ArXiv-2023 EIPE-TEXT:评估引导的迭代计划提取叙事文本生成[Paper] [Paper] [Wang You,Wenshan Wu,Yaobo Liang,Shaoguang Mao,Chenfei Wu,Maosong Wu,Maosong Cao,Yuzhe CaiArXiv-2023 RLCD:从对比度蒸馏中学习语言模型对齐的增强[Paper] [kevin Yang,Dan Klein,Asli Celikyilmaz,Nanyun Peng,Yuandong Tian]ArXiv-2023通过汇总双重性和显式轮廓控制[Paper] [Yunzhe Li,Qian Chen,Weixiang Yan,Wen Wang,Qinglin Zhang,Qinglin Zhang,Hari Sundaram]ArXiv-2022小红帽环游世界:跨语言故事计划和大型语言模型[Paper] [Evgeniia Razumovskaia,Joshua Maynez,Annie Maynez,Annie Louis,Mirella Lapata,Shashi Narayan]ACL-2023 DOC:通过详细的轮廓控制[Paper] [CODE] [KEVIN YANG,DAN KLEIN,NANYUN PENG,YUANDONG TIAN]提高长篇小说连贯性[Paper] [Code]]ArXiv-2022神经故事计划[Paper] [Anbang Ye,Christopher Cui,Taiwei Shi,Mark O.Riedl]EMNLP-2022 RE3:通过递归重复和修订生成更长的故事[纸] [凯文·杨,Yuandong Tian,Nanyun Peng,Dan Klein]AAAI-2021叙事计划生成,自我监督学习[论文] [Mihai Polceanu,Julie Porteous,Alan Lindsay,Marc Cavazza]INLG-2021 Graphplan:通过事件图[Paper] [Hong Chen,Raphael Shu,Hiroya Takamura,Hideki Nakayama的计划生成故事生成]EMNLP-2020 Aristotelian Rescorge [Paper] [seraphina Goldfarb-Tarrant,Tuhin Chakrabarty,Ralph Weischedel,Nanyun Peng]的神经故事生成内容计划。AAAI-2020草案和编辑:通过多通层的条件有条件的各种自动编码器[Paper] [Meng-Hsuan Yu,Juntao Li,Danyang Liu,Dongyan Zhao,Rui Yan,Rui Yan,Bo Tang,Bo Zhang,Haisong Zhang]ACL-2019结构故事生成的策略[Paper] [Angela Fan,Mike Lewis,Yann Dauphin]AAAI-2019 PLAN-WRITE:迈向更好的自动讲故事[Paper] [Code] [Lili Yao,Nanyun Peng,Ralph Weischedel,Kevin Knight,Dongyan Zhao,Rui Yan]EMNLP-2018基于骨架的模型,用于促进叙事故事生成中的句子之间的连贯性[Paper] [Code] [Jingjing Xu,Xuancheng Ren,Yi Zhang,Qi Zeng,Qi Zeng,Xiaoyan Cai,Xu Sun]ACL-2018分层神经故事生成[Paper] [Code] [写作提示] [Angela Fan,Mike Lewis,Yann Dauphin]AAAI-2018与深神经网的自动故事产生的活动表示[纸] [Code] [Lara J. Martin,Prithviraj Ammanabrolu,Xinyu Wang,William Hancock,Shruti Singh,Brent Harrison,Mark O. Riedl]ACL-2024 MOP:开放式自动故事生成的模块化故事前提综合[Paper] [Code] [Yan Ma,Yu Qiao,Pengfei Liu]ArXiv-2024返回起点:使用相关终点[Paper] [Code] [Anneliese Brei,Chao Zhao,Snigdha Chaturvedi]生成叙事ArXiv-2024 LIFI:具有细粒度控制代码的轻质控制文本生成[Paper] [Chufan Shi,Deng Cai,Yujiu Yang]INLG-2023控制关键字及其在文本一代中的位置[Paper] [Yuichi Sasazawa,Terufumi Morishita,Hiroaki Ozaki,Ozaki Ozaki,Osamu Imaichi,Yasuhiro Sogawa]]COLING-2022心理学指导的可控故事生成[Paper] [Yuqiang Xie,Yue Hu,Yunpeng LI,Guanqun BI,Luxi Xing,Wei Peng]WWW-2022通过有监督的对比学习[论文] [Jinuk Cho,Minsu Jeong,Jinyeong Bak,Yun-gyung Cheong]通过监督对比度学习[论文]EMNLP Findings-2021一种用于受控文本生成的插件方法[Paper] [Code] [Damian Pascual,Beni Egressy,Clara Meister,Ryan Cotterell,Roger Wattenhofer]NUSE-2021插头 - 融合:混合控制代码的可控故事框架[Paper] [Code] [Zhiyu Lin,Mark Riedl]ArXiv-2021基于变压器的有条件变异自动编码器,用于可控的故事生成[Paper] [Code] [Le Fang,Tao Zeng,Chaochun Liu,Liefeng BO,Wen Dong,Changyou Chen]ArXiv-2021概述故事:级联事件中的细粒度可控故事[Paper] [Paper] [Le Fang,Tao Zeng,Chaochun Liu,Liefeng BO,Wen Dong,Changyou Chen]EMNLP-2020 Megatron-CNTRL:可控制的故事生成,具有外部知识,使用大型语言模型[Paper] [Peng Xu,Mostofa Patwary,Mohammad Shoeybi,Raul Puri,Pascale Puri,Pascale Fung,Anima Anandkumar,Bryan Catanzaro]ACL-2019学习控制故事结局的精细情感[Paper] [Fuli Luo,Damai Dai,Pengcheng Yang,Tianyu Liu,Baobao Chang,sui sui,xu Sun]IJCAI-2019可控制的神经故事情节生成通过奖励成型[Paper] [Pradyumna Tambwekar,Murtaza Dhuliawala,Lara J. Martin,Animesh Mehta,Brent Harrison,Mark O. Riedl]ACL-2018迈向可控的故事生成[Paper] [Nanyun Peng,Marjan Ghazvininejad,Jonathan May,Kevin Knight]SIGIR-2022是什么使故事向前发展?推断常识性解释是未来事件的提示[纸] [li lin,yixin cao,lifu huang,shu'ang li,xuming hu,lijie wen,jianmin wang]EMNLP Findings-2022推断读者:引导自动故事产生常识性推理[Paper] [Xiangyu Peng,Siyan Li,Sarah Wiegreffe,Mark Riedl]AAAI-2021通过因果,共同点订购[Paper] [Prithviraj Ammanabrolu,Wesley Cheung,William Broniec,Mark O. Riedl]AIIDE-2020使故事活着:产生互动小说世界[纸] [CODE] [PRITHVIRAJ AMMANABROLU,WESLEY CHEUNG,DAN TU,WILLIAM BRONIEC,MARK O.RIEDL]TACL-2020常识性故事创造的知识增强预处理模型[Paper] [Jian Guan,Fei Huang,Zhihao Zhao,Xiaoyan Zhu,Minlie Huang]EMNLP-2020通过有针对性的常识基础改善神经故事的产生[Paper] [Code] [Huanru Henry Mao,Bodhisattwa Prasad Majumder,Julian McAuley,Garrison W. Cottrell]AAAI-2019故事结束了以增量编码和常识知识的结尾[Paper] [Jian Guan,Yansen Wang,Minlie Huang]TACL-2024语言模型是否喜欢自己的故事?促使大型语言模型进行自动故事评估[Paper] [Cyril Chhun,Fabian M. Suchanek,ChloéClavel]Arxiv-2024阅读潜台面:评估与作家短篇小说摘要的大型语言模型[纸] [Melanie Subbiah,Sean Zhang,Lydia B. Chilton,Kathleen McKeown]ArXiv-2023实验叙事:人众众众言和AI讲故事的比较[Paper] [Nina Begus]ArXiv-2023学习个性化的故事评估[论文] [Danqing Wang,Kevin Yang,Hanlin Zhu,Xiaomeng Yang,Andrew Cohen,Lei Li,Yuandong Tian]ArXiv-2023 BOOOOKSCORE:在LLMS时代[Paper] [Yapei Chang,Kyle Lo,Tanya Goyal,Mohit Iyyer]的账面长度摘要的系统探索]ArXiv-2023 Tigerscore:为所有文本生成任务建立可解释的指标[Paper] [Dongfu Jiang,Yishan Li,Ge Zhang,Wenhao Huang,Bill Yuchen Lin,Wenhu Chen]CHI-2023艺术还是技巧?大型语言模型和创造力的错误承诺[纸] [Tuhin Chakrabarty,Philippe Laban,Divyansh Agarwal,Smaranda Muresan,Chien-Sheng Wu]ACL-2023 Hauser:迈向明喻的整体和自动评估[Paper] [Qianyu He,Yikai Zhang,Jiaqing Liang,Yuncheng Huang,Yanghua Xiao,Yunwen Chen]ACL-2023大语模型可以替代人类评估吗? [纸] [Cheng-Han Chiang,Hung-Yi Lee]ArXiv-2023 Deltascore:通过不同的扰动评估故事的产生[Paper] [Zhuohan Xie,Miao Li,Trevor Cohn,Jey Han Lau]INLG-2023下一章:讲故事中的大型语言模型的研究[论文] [Zhuohan Xie,Trevor Cohn,Jey Han Lau]IEEE Access-2023短篇小说的评估指标比较[Paper] [P. NETISOPAKUL,USANISA TAOTO]EMNLP-2022 Storyer:通过排名,评级和推理的自动故事评估[Paper] [Hong Chen,Duc Minh Vo,Hiroya Takamura,Yusuke Miyao,Miyao,Hideki Nakayama]COLING-2022 :故事产生评估的基准[Paper] [Cyril Chhun,Pierre Colombo,ChloéClavel,Fabian M. Suchanek]TACL-2022批次:一个以故事为中心的基准测试,用于评估中国长文本理解和一代[论文] [Jian Guan,Zhuoer Feng,Yamei Chen,Ruilin HE,Xiaoxi Mao,Changjie fan,Minlie Huang]ACL-2021 OpenMeva:评估开放式故事产生指标的基准[Paper] [Jian Guan,Zhexin Zhang,Zhuoer Feng,Zitao Liu,Wenbiao ding,Xiaoxi Mao,Xiaoxi Mao,Changjie fan,Minlie Huang]EMNLP-2020 Union:一个未参考的指标,用于评估开放式故事生成[Paper] [Code] [Jian Guan,Minlie Huang]CoNLL-2019概括性审慎的语言模型是否会使讲故事的人更好? [纸] [代码] [Abigail See,Aneesh Pappu,Rohun Saxena,Akhila Yerukola,Christopher D. Manning]NAACL-2016 A COLCUS和评估框架,以深入了解常识性故事[论文] [纳斯林Mostafazadeh,Nathanael Chambers,Xiaodong HE,Devi Parikh,Dhruv Batra,Lucy Vanderwende,Pushmeet Kohli,PushMeet Kohli,James Allen],James Allen] ArXiv-2024协作:Multi-Llm协作故事生成和作者资格分析[Paper] [Saranya Venkatraman,Nafis Irtiza Tripto,Dongwon Lee]IREC-COLING-2024反思与共鸣:基于LLM的故事注释[Paper] [Yuetian Chen,Mei SI]ArXiv-2024 CMDAG:一个具有带注释的基础的中国隐喻数据集作为COT,用于增强隐喻产生[Paper] [Yujie Shao,Yujie Shao,Yujie Shao,Xinrong Yao,Xingwei QU,Chenghua QU,Chenghua Lin,Shi Wang,Shi Wang,Stephen W. Huang,Ge Zhang,Ge Zhang,Jie Fu]ArXiv-2023 StonyBook:小说大规模分析的系统和资源[论文] [Charuta Pethe,Allen Kim,Rajesh Prabhakar,Tanzir Pial,Steven Skiena]ACL-2023 Storywars:一个数据集和指令调整基线,用于协作故事理解和一代[Paper] [Yulun du,Lydia Chilton]TACL-2023意大利面:用于在叙事中建模参与者国家的数据集[论文] [Sayontan Ghosh,Mahnaz Koupaee,Isabella Chen,Francis Ferraro,Nathanael Chambers,Niranjan Balasubramanian]NAACL-2022一个用于理解和产生道德故事的语料库[论文] [Jian Guan,Ziqi Liu,Minlie Huang]EVAL4NLP-2021 StoryDB:广泛的多语言叙事数据集[Paper] [Alexey Tikhonov,Igor Samenko,Ivan P. Yamshchikov]ACL-2022 summscreen:用于抽象剧本摘要的数据集[Paper] [Data] [Mingda Chen,Zewei Chu,Sam Wiseman,Kevin Gimpel]Arxiv-2021 TVStorygen:用于生成具有角色描述的故事的数据集[Paper] [Mingda Chen,Kevin Gimpel]EMNLP-2020 Storium:机器中故事的数据集和评估平台[Paper] [Nader Akoury,Shufan Wang,Josh Whiting,Stephen Whiting,Stephen Hood,Nanyun Peng,Mohit Iyyer]ArXiv-2024 AI.Llude:鼓励重写AI生成的文本以支持创意表达[Paper] [David Zhou,Sarah Sterman]ArXiv-2024 Word2World:通过大语言模型[Paper] [Code] [Muhammad U. Nasir,Steven James,Julian Togelius]生成故事和世界ArXiv-2024让讲故事讲述生动的故事:表现得很流利的多模式讲故事的人[Paper] [Chuanqi Zang,Jiji Tang,Rongsheng Zhang,Zeng Zhang,Zeng Zhao,Tangjie LV,Mingtao Pei,Wei Liang]CHI-2024塑造人类协作:与语言模型共同编写的脚手架水平不同[Paper] [Paramveer S. Dhillon,Somayeh Molaei,Jiaqi Li,Maximilian Golub,Shaochun Zheng,Shaochun Zheng,Lionel P. Robert]Arxiv-2024代笔:通过个性化和代理[Paper] [Catherine Yeh,Gonzalo Ramos,Rachel Ng,Andy Huntington,Richard Banks,增强合作人类AI的写作经验]ArXiv-2023 Inspo:用一群AIS和人类写故事[Chieh-Yang Huang,Sanjana Gautam,Shannon McClellan Brooks,Ya-fang Lin,Ting-Hao'Kenneth'Huang'Huang]AAAI-2023 Scenecraft:使用大语言模型的数字游戏中自动化互动叙事场景[Paper] [Vikram Kumaran,Jonathan Rowe,Bradford Mott,James Lester]ArXiv-2023 PEARL:个性化大型语言模型写作助手,具有生成校准的猎犬[Paper] [Sheshera Mysore,Zhuoran Lu,Mengting Wan,Longqi Yang,Steve Menezes,Tina Baghaee,Tina Baghaee,Emmanuel Barajas Gonzalez,Jennifer Neville Neville,Tara Safavi,Tara Safavi,Tara Safavi,Tara safavi,Tara Safavi,Tara Safavi,Tara Safavi,Tara Safavi,Tara Safavi,Tara Safavi]]EMNLP Findings-2023是NLP模型擅长追踪思想:叙事理解的概述[paper] [lixing Zhu,Runcong Zhao,Lin Gui,Yulan He]CoNLL Workshop-2023 BabyStories:加强学习可以教授婴儿语言模型写得更好的故事吗? [Paper] [Xingmeng Zhao,Tongnian Wang,Sheri Osborn,Anthony Rios]ArXiv-2023大语模型时代的创造力支持:一项涉及新兴作家的实证研究[Paper] [Tuhin Chakrabarty,Vishakh Padmakumar,Faeze Brahman,Smaranda Muresan]UIST-2023 Storyfier:使用文本生成模型探索词汇学习支持[paper] [Zhenhui Peng,Xingbo Wang,Qiushi Han,Junkai Zhu,junkai Zhu,xiaojuan MA,Huamin Qu]PACLIC-2023在四面板漫画中生成角色线[纸] [Michimasa Inaba]ArXiv-2022创意写作与AI驱动的写作助理:专业作家的观点[纸] [Daphne Ippolito,Ann Yuan,Andy Coenen,Sehmon Burnam]ArXiv-2022调查:自动电影情节和剧本生成[Paper] [Prerak Gandhi,Pushpak Bhattacharyya]CHI-2022 Talebrush:用生成预审前的语言模型素描故事[纸] [John Joon Young Chung,Wooseok Kim,Kang Min Yoo,Hwaran Lee,Eytan Adar,Minsuk Chang]EMNLP-2022帮助我写一首诗:教学调整作为合作诗歌写作的工具[Paper] [Tuhin Chakrabarty,Vishakh Padmakakumar,他是他]CHI-2023与语言模型共同创作的剧本和戏剧脚本:行业专业人士的评估[Paper] [Piotr Mirowski,Kory W. Mathewson,Jaylen Pittman,Richard Evans]NeurIPS-2022开放式文本生成的事实增强了语言模型[Paper] [Nayeon Lee,Wei Ping,Peng Xu,Mostofa Patwary,Mohammad Shoeybi,Bryan Catanzaro]FDG-2022 Tropetwist:基于TROPE的叙事结构生成[Paper] [Alberto Alvarez,Jose Font]IUI-2022 Wordcraft:与大型语言模型的故事写作[Paper] [Ann Yuan,Andy Coenen,Emily Reif,Daphne Ippolito]ACM Computing Surveys-2023使用基于变压器的预训练的语言模型[Paper] [Hanqing Zhang,Haolin Song,Shaoyu Li,Ming li,Ming Zhou,Dawei Song]对可控文本生成的调查[Paper] [Paper]]ACL-IJCNLP-2021 Kuileixi:一款中国开放式文本冒险游戏[Paper] [Heng Ji,Jong C. Park,Rui Xia]IJCAI AI4Narratives-2020 Theaitre:人工智能写剧院戏剧[Paper] [Rudolf Rosa,OndD还Dušek,Tom Kocmi,Tom Kocmi,DavidMarečekek,Tomášusil,Tomášusil,PatríciaSchmidtová,patríciaschmidtová,dominik Doležal,KláraVosecká]ICCC-2020迈向文本冒险游戏中的自动探索生成[Paper] [Prithviraj Ammanabrolu,William Broniec,Alex Mueller,Jeremy Paul,Mark O.Riedl]