纸阅读-Convai
对话AI中的纸质阅读清单,主要包括对话系统和自然语言的生成。这个存储库不断更新? ...
- 在NLP中深入学习
- 对话系统
- 对话调查
- 会话llms
- 多模式对话
- 积极的对话
- 杂项。主动对话
- 面向目标的对话
- 非授权对话(说服与谈判)
- 个性化对话
- 情感对话
- 建议对话和CRS
- 知识接地的对话
- 面向任务的对话
- 开放域对话
- 对话评估
- 对话杂项。
- 自然语言产生
- NLG的调查
- NLG理论和技术
- NLG的扩散模型
- 可控的一代
- 文字计划
- 解码算法
- NLG评估
在NLP中深入学习
- INLP :“交互式自然语言处理”。 Arxiv(2023)[纸]
- 数据增强:“ NLP的数据增强方法的调查”。 ACL-findings(2021)[纸]
- 提示:“预训练,提示和预测:对自然语言处理中提示方法的系统调查”。 Arxiv(2021)[纸]
- NLP世界范围:“体验基础语言”。 EMNLP(2020)[纸]
- Transformer-XL :“ Transformer-XL:超出固定长度上下文的细心语言模型”。 ACL(2019)[纸] [代码]
- 变形金刚:“注意就是您所需要的”。 Neurips(2017)[Paper] [Code-incial] [Code-TF] [Code-Py]
- VAE :“跨自动编码器简介”。 Arxiv(2019)[纸]
- 注意调查:“ NLP问题中注意机制的介绍性调查”。 Arxiv(2018)[纸]
- 加性关注:“通过共同学习对齐和翻译的神经机器翻译”。 ICLR(2015)[纸]
- 乘法注意:“基于注意力的神经机器翻译的有效方法”。 Emnlp(2015)[纸]
- 内存网:“端到端内存网络”。 Neurips(2015)[纸]
- 复制机制(PGN) :“指点:用指针生成器网络汇总”。 ACL(2017)[纸] [代码]
- 复制机制:“将复制机制纳入顺序到序列学习”。 ACL(2016)[纸]
- Elmo :“深层上下文化的单词表示”。 NAACL(2018)[纸] [代码]
- 手套:“手套:单词表示的全球向量”。 EMNLP(2014)[纸] [代码]
- Word2Vec教程:“解释了Word2Vec参数学习”。 Arxiv(2016)[纸]
- 多任务学习:“深神经网络中的多任务学习概述”。 Arxiv(2017)[纸]
- 梯度下降:“梯度下降优化算法的概述”。 Arxiv(2016)[纸]
?回到顶部
对话系统
对话调查
- 数据生成:“关于对话数据生成的最新进展的调查”。 Arxiv(2024)[纸]
- 主动对话:“主动对话系统的调查:问题,方法和前景”。 IJCAI(2023)[纸]
- 负责任的对话:“朝着安全,负责任和道德对话系统的最新进展:调查”。 Arxiv(2023)[纸]
- 谈判对话:“让我们进行谈判!谈判对话系统的调查”。 Arxiv(2022)[纸]
- 基于DL的对话:“基于深度学习的对话系统的最新进展:系统调查”。 Arxiv(2021)[纸]
- 开放域对话:“构建智能开放域对话系统的挑战”。 Tois(2020)[纸]
- 对话系统:“对话系统的调查:最新进步和新的边界”。 Sigkdd Explorations(2017)[纸]
- 对话公司:“用于构建数据驱动对话系统的可用语料库的调查”。 Arxiv(2017)[纸] [数据]
?回到顶部
会话llms
- 鹦鹉:“鹦鹉:通过学习提出问题来增强多转向聊天模型”。 Arxiv(2023)[纸]
- MEMOCHAT :“ Memochat:调整LLMS使用备忘录进行一致的远程开放域对话”。 Arxiv(2023)[纸]
- Llama 2-Chat :“ Llama 2:开放基础和微调的聊天模型”。元(2023)[纸] [代码]
- chatglm3 :“ chatglm3系列:打开双语聊天llms”。 Tsinghua(2023)[代码]
- chatglm2-6b :“ chatglm2-6b:开放的双语聊天llm”。 Tsinghua(2023)[代码]
- MPC :“提示LLM作为聊天机器人模块进行长时间的开放域对话”。 ACL-findings(2023)[纸] [代码]
- MemoryBank-Siliconfriend :“ MemoryBank:增强具有长期记忆的大语言模型”。 Arxiv(2023)[纸] [代码]
- Ultrachat :“通过扩展高质量的教学对话来增强聊天语言模型”。 Arxiv(2023)[纸] [数据]
- Chatalpaca :“ Chatalpaca:基于羊驼指示的多转话语料库”。 Github(2023)[数据]
- 凤凰城:“凤凰:跨语言使chatgpt民主化”。 Arxiv(2023)[纸] [代码]
- 多莉:“自由多莉:介绍世界上第一个真正的开放指导调节的LLM”。 Databricks(2023)[代码]
- Baize :“ Baize:一个开源聊天模型,并在自chat数据上进行参数有效调整”。 Arxiv(2023)[纸] [代码]
- Vicuna :“ Vicuna:一个开源聊天机器人给GPT-4带来了90%的Chatgpt质量”。 lmsys org(2023)[博客] [代码]
- 考拉:“考拉:学术研究对话模型”。加州大学伯克利分校(2023)[博客] [代码]
- 美女:“美女:成为每个人的大型语言模型引擎”。 Lianjiatech(2023)[代码]
- 羊驼:“羊驼:强大的,可复制的指令遵循模型”。斯坦福大学(2023)[博客] [代码] [羊驼羊角]
- ChatGLM-6B :“开放的双语对话语言模型”。 Tsinghua(2023)[代码]
- 开放式辅助:“开放助理:每个人的对话人工智能”。 Github(2023)[项目] [代码]
- chatgpt :“ chatgpt:优化对话的语言模型”。 Openai(2022)[博客]
- 麻雀:“通过有针对性的人类判断提高对话代理的一致性”。 Arxiv(2022)[纸] [数据]
- BlenderBot3 :“ BlenderBot 3:一种部署的对话代理,不断学习以负责任地参与”。 Arxiv(2022)[纸]
- LAMDA :“ LAMDA:对话框应用程序的语言模型”。 Arxiv(2022)[纸]
- Godel :“ Godel:针对目标导向对话的大规模预训练”。 Arxiv(2022)[纸] [代码]
- 拟人化助理V2 :“从人类反馈中学习的强化学习培训有益且无害的助手”。 Arxiv(2022)[纸]
- 人类助手:“一名通用语言助理作为对齐实验室的实验室”。 Arxiv(2021)[纸]
?回到顶部
多模式对话
位置和体现的对话
- SLL :“基于大型语言模型的第二语言学习对话”。 Arxiv(2024)[纸]
- EMB-PLAN :“通过合成体现的对话增强的多模式体现计划预测”。 EMNLP(2023)[纸]
- WTAG :“基础模型可以观看,交谈和引导您逐步制作蛋糕吗?”。 emnlp-findings(2023)[纸] [代码]
- SIMMC-VR :“ SIMMC-VR:带有位置和沉浸式VR流的以任务为导向的多模式对话框”。 ACL(2023)[纸]
- 当然:“具有主观偏好的多模式推荐对话:新的挑战和基准”。 ACL(2023)[纸] [数据]
- 糖:“用于主动响应选择的文本数据集”。 ACL(2023)[纸] [数据]
- 思想:“思维:信念动态跟踪,并通过神经对话产生的心态建模”。 Arxiv(2023)[纸]
- HoloAssist :“全力以赴:以现实世界中交互式AI助手为中心的人类互动数据集”。 ICCV(2023)[纸] [数据]
- 合作:“通过对话中的心理建模理论建模迈向协作计划”。 ijcai(2023)[纸] [代码]
- Alexa Arena :“ Alexa Arena:一个以用户为中心的体现AI的交互式平台”。 Arxiv(2023)[纸] [代码]
- Seagull :“ Seagull:通过位置对话进行指导的体现代理”。 Alexa奖Simbot Challenge(2023)[纸]
- 情景喜剧:“您指的是哪一个?在位置对话中的多模式对象标识”。 EACL-SRW(2023)[纸] [代码]
- MLR :“通过分步多模式逻辑推理改善定位对话剂”。 DSTC11(2023)[纸]
- SimpleMTOD :“ SimpleMTOD:具有符号场景表示形式的多模式为导向对话的简单语言模型”。 Arxiv(2023)[纸]
- 春季:“春季:通过从增量布局图中鉴定的多模式问题的位置对话代理”。 AAAI(2023)[纸] [代码]
- Dorothie :“ Dorothie:在交互式自主驾驶代理中处理意外情况的口语对话”。 emnlp-findings(2022)[纸] [代码]
- 光学课:“通过程序环境产生进行对话学习”。 ACL(2022)[纸]
- Danli :“ Danli:遵循自然语言指示的审议代理”。 EMNLP(2022)[纸] [代码]
- PRS :“学会介导务实的沟通差异”。 ACL(2022)[纸] [代码]
- 联合模型:“学习嵌入位置对话剂的多模式环境”。 naacl-findings(2022)[纸] [代码]
- Teach_film :“不要复制老师:体现对话中的数据和模型挑战”。 EMNLP(2022)[纸] [代码]
- 教导:“教导:任务驱动的体现聊天的代理”。 AAAI(2022)[纸] [数据]
- Mindcraft :“ Mindcraft:在协作任务中对对话的思维理论建模”。 EMNLP(2021)[纸] [代码]
- 多模式模型:“使用验证的单峰模型用于SIMMC 2.0的多模式相互作用”。 DSTC10(2022)[纸] [代码]
- SIMMC 2.0 :“ SIMMC 2.0:面向任务的对话框数据集,用于沉浸式多模式对话” EMNLP(2021)[PAPER] [code]
- MM-DST :“用于多域端到端对话系统的多任务学习”。 Arxiv(2021)[纸]
- SIMMC :“位置和交互式多模式对话”。 Coling(2020)[纸] [代码]
- Minecraft-bap :“学习在Minecraft对话中执行指令”。 ACL(2020)[纸] [代码]
- 谷物:“执行指令在所在的协作互动中”。 EMNLP(2019)[纸] [代码]
- Minecraft对话:“ Minecraft中的协作对话”。 ACL(2019)[纸] [代码]
- CLG :“协作语言基于人类风光对话的基础”。 AI杂志(2016)[纸]
- SHRD :“回到街区世界:通过处于人类机器人对话来学习新动作”。 Sigdial(2014)[纸]
视觉上的对话
- 老虎:“老虎:多模式对话响应生成的统一生成模型框架”。 Coling(2024)。 [纸] [代码]
- DialOgCC :“ DialoGCC:用于创建高质量多模式对话数据集的自动化管道”。 NAACL(2024)[纸] [数据]
- VLAW-MDM :“多模式对话模型中视觉热身任务的框架”。 EMNLP(2023)[纸] [代码]
- Zrigf :“ Zrigf:零资源图像的对话世代的创新多模式框架”。 ACM MM(2023)[纸] [代码]
- Vdialogue :“ Vdialogue:视觉上对话的统一评估基准”。 Arxiv(2023)[纸]
- TextBind :“文本键:多转交织的多模式指令在野外遵循”。 Arxiv(2023)[纸] [数据]
- VSTAR :“ VSTAR:视频接地的对话数据集,用于使用场景和主题过渡的语义理解”。 ACL(2023)[纸] [数据]
- COMSET :“基于多模式角色的漫画对话的一代”。 ACL(2023)[纸] [代码]
- MPCHAT :“ MPCHAT:进行多模式角色接地的对话”。 ACL(2023)[纸] [代码]
- 速度:“速度:统一的多模式对话与进步和作曲专家进行培训”。 ACL(2023)[纸] [代码]
- mmdialog :“ mmdialog:大规模的多转向对话数据集,用于多模式开放式对话”。 ACL(2023)[纸] [数据]
- MDS-S2 :“双重语义知识组成的多模式对话框系统”。 Sigir(2023)[纸]
- tiktalk :“ tiktalk:现实世界中的一个多模式对话数据集”。 Arxiv(2023)[纸] [代码]
- 香槟:“香槟:从大型网络视频中学习真实的对话”。 Arxiv(2023)[纸] [代码]
- MMCHAT :“ MMCHAT:社交媒体上的多模式聊天数据集”。 LREC(2022)[纸] [代码]
- CRVD :“关于视频接地对话的多模式语义图的协作推理”。 emnlp-findings(2022)[纸]
- M3ED :“ M3ED:多模式多场景多标签情感对话数据库”。 ACL(2022)[纸] [数据]
- MDRG :“多模式对话响应产生”。 ACL(2022)[纸]
- Unitranser :“ Unitranser:多模式面向任务的对话框系统的统一变压器语义表示框架”。 ACL(2022)[纸]
- 摄影:“摄影:一个人类对话数据集具有联合图像文本建模的照片共享行为”。 ACL(2021)[纸] [数据]
- 多模式对话:“通过用语义相关图像替换文本来构建多模式对话数据集”。 ACL(2021)[纸] [代码]
- OpenVidial 2.0 :“ OpenVidial 2.0:具有视觉上下文的大型,开放域对话生成数据集”。 Arxiv(2021)[纸] [数据]
- 宝藏:“多模式对话框系统:基于关系图的上下文感知问题理解”。 ACM MM(2021)[纸] [代码]
- MMCONV :“ MMCONV:跨多个域的多模式对话搜索的环境”。 Sigir(2021)[纸] [数据]
- 图像聊天:“图像聊天:引人入胜的对话”。 ACL(2020)[纸] [数据]
- MTN :“端到端视频接地对话系统的多模式变压器网络”。 ACL(2019)[纸] [代码]
- MELD :“ MELD:在对话中进行情感识别的多模式多方数据集”。 ACL(2019)[纸] [数据]
- CLEVR-DIALOG :“ CLEVR-DIALOG:用于视觉对话中多轮推理的诊断数据集”。 NAACL(2019)[纸] [数据]
- Visdial-RL :“通过回答各种问题来改善生成视觉对话框”。 EMNLP(2019)[纸] [代码]
- 魔术:“多模式对话框系统:通过自适应解码器生成响应”。 ACM MM(2019)[纸] [代码]
- KMD :“知识感知的多模式对话系统”。 ACM MM(2018)[纸]
- MMD :“建立大型多模式域知觉对话系统”。 AAAI(2018)[纸] [数据]
- 散步:“散步:通过扎根的对话来导航纽约市”。 Arxiv(2018)[纸] [代码]
- IGC :“图像接地的对话:自然问题和响应产生的多模式上下文”。 IJCNLP(2017)[纸] [数据]
- Visdial :“视觉对话”。 CVPR(2017)[纸] [数据]
?回到顶部
积极的对话
杂项。主动对话
- DPDP :“像人类一样计划:对话计划的双过程框架”。 ACL(2024)[纸] [代码]
- PCA :“朝着以人为本的主动对话代理人”。 Sigir(2024)[纸]
- Procot :“提示和评估大型语言模型以进行主动对话:澄清,目标引导和非合作代理”。 emnlp-findings(2023)[纸] [代码]
- 教程:“对话式AI的目标意识:积极性,非企业及其他人”。 ACL(2023)[纸]
面向目标的对话
- PAI :“迈向以目标为导向的在线教育中的智能辅导系统”。 Arxiv(2023)[纸]
- topdial :“具有个性化的面向目标的主动对话系统:问题制定和数据集策划”。 EMNLP(2023)[纸] [代码]
- RTCP :“增强目标驱动的对话促进”。 EMNLP(2023)[纸] [代码]
- MTGP :“ MTGP:以柔性转弯为引导的全球路径指导的多转向目标对话”。 ACL-findings(2023)[纸] [代码]
- 颜色:“通过布朗桥的对话计划,以实现目标为主动对话的随机过程”。 ACL-findings(2023)[纸] [代码]
- TOPKG :“ TopKg:通过全球知识图表的面向目标的对话框”。 Coling(2022)[纸] [代码]
- TGCP :“目标引导的开放域对话计划”。 Coling(2022)[纸] [代码]
- FOP :“对话生成的长期控制:方法和评估”。 NAACL(2022)[纸] [代码]
- CODA :“使用常识性和数据增强的目标引导的对话响应生成”。 naacl-findings(2022)[纸] [代码]
- Otters :“ Otters:开放域对话的一转主题过渡”。 ACL(2021)[纸] [数据]
- CG-nar :“清楚地思考,快速交谈:开放域对话系统的概念引导的非自动回归产生”。 EMNLP(2021)[纸] [代码]
- 杜肯夫:“主动人机对话,具有明确的对话目标”。 ACL(2019)[纸] [代码]
- CKC :“关键字引导的神经对话模型”。 AAAI(2021)[纸] [代码]
- Knowhrl :“知识图基于开放域对话生成的目标计划”。 AAAI(2020)[纸]
- DKRN :“目标引导的开放域对话的动态知识路由网络”。 AAAI(2020)[纸] [代码]
- TGCONV :“目标引导的开放域对话”。 ACL(2019)[纸] [代码]
非授权对话(说服与谈判)
- 旅行:“力量在于差异!通过量身定制的策略计划朝着有效的非授权对话迈进。” Arxiv(2024)[纸]
- INA :“ INA:通过基于奖励的对话系统增强谈判策略的综合方法”。 EMNLP(2023)[纸] [数据]
- I-Pro :“与非合作用户互动:主动对话策略的新范式”。 Sigir(2022)[纸]
- PAAD :“迈向意识到的自主对话代理人”。 NAACL(2022)[纸] [代码]
- persrfi :“改进与模仿:通过强化学习和人类示威来减少说服对话的重复和不一致”。 emnlp-findings(2021)[纸] [代码]
- Resper :“ Resper:在计算上建模有说服力对话中的抵抗策略”。 EACL(2021)[纸] [代码]
- ARDM :“与大规模预训练的语言模型交替的复发对话模型”。 EACL(2021)[纸] [代码]
- 拨号仪:“拨号仪:将可解释的策略图网络纳入谈判对话”。 ICLR(2021)[纸] [代码]
- 谈判tom :“改善与人格建模谈判的对话系统”。 ACL(2021)[纸] [代码]
- Fehed :“使用明确的语义和战略对话记录增强非授权对话系统”。 ICLR(2020)[纸] [代码]
- CTX-PSA :“学习计划并分别实现开放式对话系统”。 emnlp-findings(2020)[纸] [代码]
- 谈判教练:“有效谈判的动态战略教练”。 Sigdial(2019)[纸] [代码]
- 说服力库氏:“善意:建立一个个性化的有说服力的对话体系,以实现社会善良”。 ACL(2019)[纸] [数据]
- Craigslistbargain :“在谈判对话中解耦策略和发电”。 EMNLP(2018)[纸] [数据]
?回到顶部
个性化对话
基于角色的对话
- LLM-WEREWOLF :“探索通信游戏的大型语言模型:关于狼人的实证研究”。 Arxiv(2023)[纸]
- Chatharuhi :“ Chatharuhi:通过大语言模型在现实中恢复动漫角色”。 Arxiv(2023)[报告] [代码]
- DPCD :“ Hi Sheldon!从电视节目中创建深厚的个性化角色”。 Arxiv(2023)[纸] [数据]
- 康奈尔(Cornell)富裕:“使用丰富的元数据注释对屏幕字符的个性化语言建模”。 Arxiv(2023)[纸] [数据]
- KNUDGE :“非本体论忠实的非玩家角色对话”。 Arxic(2022)[纸]
- HPD :“大型语言模型与哈利·波特(Harry Potter)结识:双语数据集,用于使对话代理与角色保持一致”。 Arxiv(2022)[纸] [数据]
- 拨号故事:“理解和在故事中角色之间的对话的基准”。 Arxiv(2022)[纸]
- CAYALL :“建立角色指定的开放域对话系统利用大规模语言模型”。 NAACL(2022)[纸] [数据]
- PDP :“结识您最喜欢的角色:开放域聊天机器人模仿虚构的角色,只有几句话”。 NAACL(2022)[纸] [代码]
- RPA :“我是我还是你?最先进的对话模型无法保持身份”。 NAACL-FINDINGS(2022)[纸]
- PrineChat :“ Pranemchat:通过对话和聊天机器人进行渐进的表现来支持虚构人物的创建”。 ACM C&C(2021)[纸]
- 阿罗哈:“阿罗哈:对对话代理人人的人工学习”。 AAAI(2020)[纸] [代码]
- 光:“学习在幻想文本冒险游戏中说话和行动”。 EMNLP(2019)[纸] [数据]
人格意识对话
- UBPL :“通过不受欢迎的个性化词典来定制大语言模型中的人格特征”。 Arxiv(2023)[纸]
- PraneChat :“ Pranemchat:学习具有个性化社会支持的对话人AI”。 Arxiv(2023)[纸] [代码]
- CHATGPT-MBTI :“ Chatgpt可以评估人格吗?一个一般评估框架”。 Arxiv(2023)[纸] [代码]
- 提示性格:“与零射击及时的学习对话中的人格风格”。 IWSD(2023)[纸]
- CPED :“ CPED:一个大规模的中国个性化和情感对话数据集,用于对话AI”。 Arxiv(2022)[纸] [数据]
- PELD :“自动选择情感以通过受人格影响的情绪转变来响应”。 ACL-findings(2021)[纸] [数据]
- Friendspersona :“使用细心网络和上下文嵌入的独白和多方对话的自动基于文本的个性识别”。 AAAI-Student摘要(2020)[纸] [数据]
- APR :“使用多方对话中的重叠动态来识别性格特征”。 Interspeech(2019)[纸]
- 个人迪拉格:“具有多元化特征的个性化对话产生”。 Arxiv(2019)[纸] [数据]
- Personagenlg :“通过神经自然语言发生器控制基于人格的风格变化”。 Sigdial(2018)[纸] [数据]
基于角色的对话
- Comperdial :“ Comperdial:常识性角色对话数据集和基准”。 Arxiv(2024)[纸]
- IDL :“”在我们学习的对话中:“通过内部学科学习进行个性化对话,而无需预先定义的个人资料”。 Arxiv(2024)[纸]
- Dialogicl :“制定良好的提示或提供示例性的对话?研究基于角色的对话生成的文本学习的研究”。 Arxiv(2024)[纸]
- Varmi :“建立角色一致的对话代理与离线加强学习”。 EMNLP(2023)[纸] [代码]
- OPELA :“当人群遇到角色时:创建一个大规模的开放域角色对话语料库”。 Arxiv(2023)[纸] [数据]
- 原始:“通过对订单不敏感的代表正规化建立强大的个性化对话生成”。 ACL-findings(2023)[纸] [代码]
- CLV :“通过对比的潜在变量增强个性化的对话产生:结合稀疏和密集的角色”。 ACL(2023)[纸] [代码]
- SIMOAP :“ SIMOAP:通过过度采样和评估来提高基于角色的对话生成的连贯性和一致性”。 ACL(2023)[纸] [代码]
- LMEDR :“学习为角色一致的对话记忆和话语关系的记忆”。 AAAI(2023)[纸] [代码]
- 检索到预测:“通过延伸角色的对话中的人格一致性提高”。 CIKM(2022)[纸] [代码]
- Intient-Persona :“具有隐式用户角色检测的个性化对话生成器”。 Coling(2022)[纸]
- CareCallMemory :“让我更新!长期对话中的内存管理”。 EMNLP-findings(2022)[纸] [数据]
- PersonadeFense :“您不知道我最喜欢的颜色:防止对话表示揭示说话者的私人角色”。 NAACL(2022)[纸] [代码]
- 及时调整:“通过及时调整构建个性化对话系统”。 NAACL-SRW(2022)[纸]
- Dulemon :“长时间看不到!长期角色记忆的开放域对话”。 ACL-findings(2022)[纸] [数据]
- 信息:“您真正理解我的需求:知识和友好的对话代理人以知识和角色为基础”。 emnlp-findings(2022)[纸] [代码]
- 重点:“呼吁定制对话:自定义对话接地角色和知识”。 AAAI(2022)[纸] [代码]
- MSP :“更少的是:学习为个性化对话的创造来完善对话历史的历史”。 NAACL(2022)[纸]
- GME :“通过接地最小的编辑通过可转移的角色接地对话”。 EMNLP(2021)[纸] [代码]
- 鲍勃:“鲍勃:伯特·伯特(Bert Bert of Bert),用于培训有限个性化数据的基于角色的对话模型”。 ACL(2021)[纸] [代码]
- PABST :“与背景故事无监督的角色接地对话”。 ACL(2021)[纸] [代码]
- DHAP :“每人一个聊天机器人:基于隐式用户配置文件创建个性化的聊天机器人”。 Sigir(2021)[纸]
- PCHATBOT :“ PCHATBOT:个性化聊天机器人的大规模数据集”。 Sigir(2021)[纸] [数据]
- Compac :“喜欢远足?您可能喜欢自然:与人物的对话和常识性扩展”。 EMNLP(2020)[纸] [代码]
- 务实的一致性:“我听起来像我吗?通过务实的自我意识改善对话中的角色一致性”。 EMNLP(2020)[纸] [代码]
- Xpersona :“ Xpersona:评估多语言个性化聊天机器人”。 Arxiv(2020)[纸] [数据]
- KVPI :“开放域对话代理的配置文件一致性识别”。 EMNLP(2020)[纸] [代码]
- GDR :“生成,删除和重写:改善对话生成角色一致性的三阶段框架”。 ACL(2020)[纸]
- p^2bot :“你给我留下了深刻的印象:通过相互角色感知产生对话”。 ACL(2020)[纸] [代码]
- RCDG :“通过利用自然语言推论来产生角色一致的对话”。 AAAI(2020)[纸] [代码]
- Persona-sparse :“具有角色 - 帕斯斯数据的基于培训的个性化对话生成模型”。 AAAI(2020)[纸]
- Personawae :“通过增强的Wasserstein AutoCoders在连续空间中为响应产生的个性化建模”。 Emnlp(2019)[纸]
- PAML :“通过元学习个性化对话代理”。 ACL(2019)[纸] [代码]
- 人类法:“个性化对话代理:我有一只狗,你也有宠物吗?” ACL(2018)[纸] [数据]
- PCCM :“将个性/个人资料分配给聊天计算机,以产生连贯的对话”。 IJCAI(2018)[纸]
?回到顶部
情感对话
情感支持对话
- 偏好偏见:“大型语言模型能否成为良好的情感支持者?减轻对情感支持对话的偏好偏见”。 ACL(2024)[纸]
- ESCOT :“ ESCOT:朝着可解释的情感支持对话系统迈进”。 ACL(2024)[纸] [代码]
- 松饼:“松饼:通过多方面的AI反馈来减轻情感支持对话中的无济于事”。 ACL-findings(2024)[纸] [代码]
- DDRCU :“对情感支持对话的动态演示检索和认知理解”。 Sigir(2024)[纸] [代码]
- Kemi :“知识增强的情感支持对话的混合定位对话系统”。 ACL(2023)[纸] [代码]
- CSCONV :“具有多源知识融合的认知知识融合的认知刺激系统,具有认知障碍的长者”。 ACL(2023)[纸] [代码]
- Augesc :“ Augesc:与大型语言模型进行对话进行对话,以进行情感支持对话”。 ACL找到(2023)[纸]
- TransESC :“ Transesc:通过转弯状态过渡来平滑情感支持对话”。 ACL-findings(2023)[纸] [代码]
- PAL :“ PAL:角色增强的情感支持对话产生”。 ACL-findings(2023)[纸] [代码]
- MultiSC :“通过LookAhead策略计划改善多转弯情感支持对话的产生”。 EMNLP(2022)[纸] [代码]
- MISC :“ MISC:一种混合的战略意识模型,将彗星集成为情感支持对话”。 ACL(2022)[纸] [代码]
- C3KG :“ C3KG:中国常识对话知识图”。 ACL-findings(2022)[纸] [数据]
- GLHG :“全球控制,在本地理解:情感支持对话的全球到本地分层图网络”。 IJCAI(2022)[纸]
- 埃斯蒂夫:“走向情感支持对话系统”。 ACL(2021)[纸] [数据]
善解人意的对话
- StickerConv :“ StickerConv:从头开始生成多模式同理反应”。 ACL(2024)[纸] [数据]
- 感知性:“与人类般的代理人交谈:通过可感知的声音接受和反应进行善解人意的对话”。 ACL(2024)[纸] [代码]
- 电子核心:“电子核:情感相关性增强了同理心对话的产生” EMNLP(2023)[纸]
- empsoa :“不要迷失自己!通过明确的自我意识来产生同情心的响应”。 ACL-findings(2023)[纸] [代码]
- 案例:“案例:对善解人意的反应产生的粗到精美的认知和感情对齐”。 ACL(2023)[纸] [代码]
- 护理:“护理:通过有条件图生成的促进反应的因果关系”。 emnlp-findings(2022)[纸] [代码]
- EMPGPT-3 :“ GPT-3是否会产生同理心对话?一种新颖的文本示例选择方法和自动评估指标,用于促进对话的产生”。 Coling(2022)[纸] [代码]
- posemodial :“以积极的情绪启发迈向多转弯的善解人意对话”。 Arxiv(2022)[纸]
- CEM :“ CEM:常识性感知的善解人意反应产生”。 AAAI(2022)[纸] [代码]
- Gee :“引起情感原因的善解人意反应的观点和实用主义者”。 EMNLP(2021)[纸] [代码]
- RECEC :“通过识别对话中的情绪原因改善善解人心的反应产生”。 emnlp-findings(2021)[纸] [代码]
- COMAE :“ COMAE:善解人意的响应产生的多因素分层框架”。 ACL-findings(2021)[纸] [代码]
- 护理:“护理:具有潜在概念的共识性情感反应产生”。 AAAI(2021)[纸] [代码]
- EMPDG :“ EMPDG:多分辨率互动交互式对话产生”。 Coling(2020)[纸] [代码]
- Mime :“哑剧:模仿情绪,以产生同理心反应的产生”。 EMNLP(2020)[纸] [代码]
- PEC :“迈向基于角色的移情对话模型”。 EMNLP(2020)[纸] [代码]
- 穆尔:“穆尔:善解人意的听众的混合物”。 EMNLP(2019)[纸] [代码]
- 善解人意的人:“走向善解人意的开放域对话模型:新的基准和数据集”。 ACL(2019)[纸] [数据]
- EMOD :“在对话中产生特定情绪的响应”。 ACL(2019)[纸]
- Mojitalk :“ Mojitalk:大规模产生情感反应”。 ACL(2018)[纸]
- ECM :“情感聊天机:具有内部和外部记忆的情感对话”。 AAAI(2018)[纸] [代码]
?回到顶部
建议对话和CRS
- TCP-Dial :“跟随我:目标驱动的推荐对话系统的对话计划”。 Arxiv(2022)[纸] [代码]
- 克斯:“ KERS:具有多个子目标的推荐对话系统的知识增强框架”。 emnlp-findings(2021)[纸] [代码]
- durecdial2.0 :“ durecdial 2.0:双语平行语料库,用于对话推荐”。 EMNLP(2021)[纸] [代码]
- durecdial :“通过多类对话进行对话建议”。 ACL(2020)[纸] [代码]
- TG-REDIAL :“针对主题引导的对话推荐系统”。 Coling(2020)[纸] [代码]
- 启发:“灵感:迈向社交建议对话系统”。 EMNLP(2020)[纸] [数据]
- Gorecdial :“推荐作为通信游戏:以目标对话进行自我监督的机器人游戏”。 EMNLP(2019)[纸] [代码]
- CRS-Survey :“对会话推荐系统的调查”。 ACM计算调查(2021)[纸]
- CRS-Survey :“会话推荐系统的进步和挑战:调查”。 Arxiv(2021)[纸]
- CRSLAB :“ CRSLAB:用于构建对话推荐系统的开源工具包”。 Arxiv(2021)[纸] [代码]
- MESE :“通过上下文感知项目元信息提高对话推荐系统的质量”。 NAACL(2022)[纸] [代码]
- C2-CRS :“ C2-CRS:对会话推荐系统的粗到最细对的对比学习”。 WSDM(2022)[纸] [代码]
- botplay :“自我监督的机器人播放具有理由的会话建议”。 arXiv(2021) [paper]
- RID : "Finetuning Large-Scale Pre-trained Language Models for Conversational Recommendation with Knowledge Graph". arXiv(2021) [paper] [code]
- CRFR : "CRFR: Improving Conversational Recommender Systems via Flexible Fragments Reasoning on Knowledge Graphs". EMNLP(2021) [paper]
- NTRD : "Learning Neural Templates for Recommender Dialogue System". EMNLP(2021) [paper] [code]
- CR-Walker : "CR-Walker: Tree-Structured Graph Reasoning and Dialog Acts for Conversational Recommendation". EMNLP(2021) [paper] [code]
- RevCore : "RevCore: Review-augmented Conversational Recommendation". ACL-Findings(2021) [paper] [code]
- KECRS : "KECRS: Towards Knowledge-Enriched Conversational Recommendation System". arXiv(2021) [paper]
- FPAN : "Adapting User Preference to Online Feedback in Multi-round Conversational Recommendation". WSDM(2021) [paper] [code]
- UNICORN : "Unified Conversational Recommendation Policy Learning via Graph-based Reinforcement Learning". SIGIR(2021) [paper] [code]
- KGSF : "Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion". KDD(2020) [paper] [code]
- CPR : "Interactive Path Reasoning on Graph for Conversational Recommendation". KDD(2020) [paper] [code]
- EAR : "Estimation-Action-Reflection: Towards Deep Interaction Between Conversational and Recommender Systems". WSDM(2020) [paper] [code]
- KBRD : "Towards Knowledge-Based Recommender Dialog System". EMNLP(2019) [paper] [code]
- ReDial : "Towards Deep Conversational Recommendations". NeurIPS(2018) [paper] [data]
?回到顶部
Knowledge-grounded Dialogue
- DOCTOR : "Dialogue Chain-of-Thought Distillation for Commonsense-aware Conversational Agents". EMNLP(2023) [paper] [code] [demo]
- GATE : "Well Begun is Half Done: Generator-agnostic Knowledge Pre-Selection for Knowledge-Grounded Dialogue". EMNLP(2023) [paper] [code]
- CONNER : "Beyond Factuality: A Comprehensive Evaluation of Large Language Models as Knowledge Generators". EMNLP(2023) [paper] [code]
- K-DIAL : "Improving Factual Consistency for Knowledge-Grounded Dialogue Systems via Knowledge Enhancement and Alignment". EMNLP-Findings(2023) [paper]
- GLM-Dialog : "GLM-Dialog: Noise-tolerant Pre-training for Knowledge-grounded Dialogue Generation". arXiv(2023) [paper] [code]
- RHO : "RHO (ρ): Reducing Hallucination in Open-domain Dialogues with Knowledge Grounding". ACL-Findings(2023) [paper] [code]
- MultiRefKGC : "There Is No Standard Answer: Knowledge-Grounded Dialogue Generation with Adversarial Activated Multi-Reference Learning". EMNLP(2022) [paper] [code]
- CorefDiffs : "CorefDiffs: Co-referential and Differential Knowledge Flow in Document Grounded Conversations". COLING(2022) [paper] [code]
- DTR : "Stylized Knowledge-Grounded Dialogue Generation via Disentangled Template Rewriting". NAACL(2022) [paper] [code]
- XDAI : "XDAI: A Tuning-free Framework for Exploiting Pre-trained Language Models in Knowledge Grounded Dialogue Generation". KDD(2022) [paper] [code]
- PersonaKGC : "There Are a Thousand Hamlets in a Thousand People's Eyes: Enhancing Knowledge-grounded Dialogue with Personal Memory". ACL(2022) [paper] [code]
- KI : "Lexical Knowledge Internalization for Neural Dialog Generation". ACL(2022) [paper] [code]
- DiffKG : "Towards Large-Scale Interpretable Knowledge Graph Reasoning for Dialogue Systems". ACL-Findings(2022) [paper] [code]
- KSAM : "KSAM: Infusing Multi-Source Knowledge into Dialogue Generation via Knowledge Source Aware Multi-Head Decoding". ACL-Findings(2022) [paper]
- MDSP : "Multi-Stage Prompting for Knowledgeable Dialogue Generation". ACL-Findings(2022) [paper] [code]
- FSB : "Few-Shot Bot: Prompt-Based Learning for Dialogue Systems". arXiv(2021) [paper] [code]
- P-GDG : "Exploring Prompt-based Few-shot Learning for Grounded Dialog Generation". arXiv(2021) [paper]
- KAT-TSLF : "A Three-Stage Learning Framework for Low-Resource Knowledge-Grounded Dialogue Generation". EMNLP(2021) [paper] [code]
- DIALKI : "DIALKI: Knowledge Identification in Conversational Systems through Dialogue-Document Contextualization". EMNLP(2021) [paper] [code]
- CoLV : "CoLV: A Collaborative Latent Variable Model for Knowledge-Grounded Dialogue Generation". EMNLP(2021) [paper]
- SKT-KG : "Augmenting Knowledge-grounded Conversations with Sequential Knowledge Transition". NAACL(2021) [paper]
- MSKE : "More is Better: Enhancing Open-Domain Dialogue Generation via Multi-Source Heterogeneous Knowledge". EMNLP(2021) [paper] [code]
- EARL : "EARL: Informative Knowledge-Grounded Conversation Generation with Entity-Agnostic Representation Learning". EMNLP(2021) [paper] [code]
- KGD-CF : "Increasing Faithfulness in Knowledge-Grounded Dialogue with Controllable Features". ACL(2021) [paper]
- SECE : "Space Efficient Context Encoding for Non-Task-Oriented Dialogue Generation with Graph Attention Transformer". ACL(2021) [paper] [code]
- MIKe : "Initiative-Aware Self-Supervised Learning for Knowledge-Grounded Conversations". SIGIR(2021) [paper] [code]
- GOKC : "Learning to Copy Coherent Knowledge for Response Generation". AAAI(2021) [paper] [code]
- KnowledGPT : "Knowledge-Grounded Dialogue Generation with Pre-trained Language Models". EMNLP(2020) [paper] [code]
- DiffKS : "Difference-aware Knowledge Selection for Knowledge-grounded Conversation Generation". EMNLP-Findings(2020) [paper] [code]
- DukeNet : "DukeNet: A Dual Knowledge Interaction Network for Knowledge-Grounded Conversation". SIGIR(2020) [paper] [code]
- CCN : "Cross Copy Network for Dialogue Generation". EMNLP(2020) [paper] [code]
- PIPM : "Bridging the Gap between Prior and Posterior Knowledge Selection for Knowledge-Grounded Dialogue Generation". EMNLP(2020) [paper]
- ConceptFlow : "Grounded Conversation Generation as Guided Traverses in Commonsense Knowledge Graphs". ACL(2020) [paper] [code]
- ConKADI : "Diverse and Informative Dialogue Generation with Context-Specific Commonsense Knowledge Awareness". ACL(2020) [paper] [code]
- KIC : "Generating Informative Conversational Response using Recurrent Knowledge-Interaction and Knowledge-Copy". ACL(2020) [paper]
- SKT : "Sequential Latent Knowledge Selection for Knowledge-Grounded Dialogue". ICLR(2020) [paper] [code]
- KdConv : "KdConv: A Chinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation". ACL(2020) [paper] [data]
- TransDG : "Improving Knowledge-aware Dialogue Generation via Knowledge Base Question Answering". AAAI(2020) [paper] [code]
- RefNet : "RefNet: A Reference-aware Network for Background Based Conversation". AAAI(2020) [paper] [code]
- GLKS : "Thinking Globally, Acting Locally: Distantly Supervised Global-to-Local Knowledge Selection for Background Based Conversation". AAAI(2020) [paper] [code]
- AKGCM : "Knowledge Aware Conversation Generation with Explainable Reasoning over Augmented Graphs". EMNLP(2019) [paper] [code]
- DyKgChat : "DyKgChat: Benchmarking Dialogue Generation Grounding on Dynamic Knowledge Graphs". EMNLP(2019) [paper] [code]
- OpenDialKG : "OpenDialKG: Explainable Conversational Reasoning with Attention-based Walks over Knowledge Graphs". ACL(2019) [paper] [data]
- WoW : "Wizard of Wikipedia: Knowledge-Powered Conversational agents". ICLR(2019) [paper]
- PostKS : "Learning to Select Knowledge for Response Generation in Dialog Systems". IJCAI(2019) [paper] [code-1] [code-2]
- NKD : "Knowledge Diffusion for Neural Dialogue Generation". ACL(2018) [paper] [data]
- Dual Fusion : "Smarter Response with Proactive Suggestion: A New Generative Neural Conversation Paradigm". IJCAI(2018) [paper]
- CCM : "Commonsense Knowledge Aware Conversation Generation with Graph Attention". IJCAI(2018) [paper] [code-tf] [code-py]
- MTask : "A Knowledge-Grounded Neural Conversation Model". AAAI(2018) [paper]
- GenDS : "Flexible End-to-End Dialogue System for Knowledge Grounded Conversation". arXiv(2017) [paper]
?回到顶部
Task-oriented Dialogue
- P-ToD : "Personalizing Task-oriented Dialog Systems via Zero-shot Generalizable Reward Function". CIKM(2022) [paper]
- Dialogic : "Dialogic: Controllable Dialogue Simulation with In-Context Learning". EMNLP-Findings(2022) [paper] [code]
- KB-Adapter : "Injecting Domain Knowledge in Language Models for Task-Oriented Dialogue Systems". EMNLP(2022) [paper] [code]
- TacoBot : "Bootstrapping a User-Centered Task-Oriented Dialogue System". Proceedings of Alexa Prize TaskBot(2021) [paper]
- USDA : "User Satisfaction Estimation with Sequential Dialogue Act Modeling in Goal-oriented Conversational Systems". WWW(2022) [paper] [code]
- USS : "Simulating User Satisfaction for the Evaluation of Task-oriented Dialogue Systems". SIGIR(2021) [paper] [data]
- NS-Dial : "An Interpretable Neuro-Symbolic Reasoning Framework for Task-Oriented Dialogue Generation". ACL(2022) [paper] [code]
- GALAXY : "GALAXY: A Generative Pre-trained Model for Task-Oriented Dialog with Semi-Supervised Learning and Explicit Policy Injection". AAAI(2022) [paper] [code]
- PPTOD : "Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System". arXiv(2021) [paper] [code]
- ToDCL : "Continual Learning in Task-Oriented Dialogue Systems". EMNLP(2021) [paper] [code]
- IR-Net : "Intention Reasoning Network for Multi-Domain End-to-end Task-Oriented Dialogue". EMNLP(2021) [paper]
- HyKnow : "HyKnow: End-to-End Task-Oriented Dialog Modeling with Hybrid Knowledge Management". ACL-Findings(2021) [paper] [code]
- DDMN : "Dual Dynamic Memory Network for End-to-End Multi-turn Task-oriented Dialog Systems". COLING(2020) [paper] [code]
- ToD-BERT : "ToD-BERT: Pre-trained Natural Language Understanding for Task-Oriented Dialogues". EMNLP(2020) [paper] [code]
- GraphDialog : "GraphDialog: Integrating Graph Knowledge into End-to-End Task-Oriented Dialogue Systems". EMNLP(2020) [paper] [code]
- MARCO : "Multi-Domain Dialogue Acts and Response Co-Generation". ACL(2020) [paper] [code]
- DF-Net : "Dynamic Fusion Network for Multi-Domain End-to-end Task-Oriented Dialog". ACL(2020) [paper] [code]
- MALA : "MALA: Cross-Domain Dialogue Generation with Action Learning". AAAI(2020) [paper]
- SGD : "Towards Scalable Multi-domain Conversational Agents: The Schema-Guided Dialogue Dataset". AAAI(2020) [paper] [data]
- CrossWOZ : "CrossWOZ: A Large-Scale Chinese Cross-Domain Task-Oriented Dialogue Dataset". TACL(2020) [paper] [code]
- MultiWOZ : "MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling". EMNLP(2018) [paper] [code]
- Neural Task-Oriented Dialogue : "Learning to Memorize in Neural Task-Oriented Dialogue Systems". MPhil Thesis(2019) [paper]
- GLMP : "Global-to-local Memory Pointer Networks for Task-Oriented Dialogue". ICLR(2019) [paper] [code]
- KB Retriever : "Entity-Consistent End-to-end Task-Oriented Dialogue System with KB Retriever". EMNLP(2019) [paper] [data]
- TRADE : "Transferable Multi-Domain State Generator for Task-Oriented Dialogue Systems". ACL(2019) [paper] [code]
- WMM2Seq : "A Working Memory Model for Task-oriented Dialog Response Generation". ACL(2019) [paper]
- Pretrain-Fine-tune : "Training Neural Response Selection for Task-Oriented Dialogue Systems". ACL(2019) [paper] [data]
- Multi-level Mem : "Multi-Level Memory for Task Oriented Dialogs". NAACL(2019) [paper] [code]
- BossNet : "Disentangling Language and Knowledge in Task-Oriented Dialogs ". NAACL(2019) [paper] [code]
- SDN : "Subgoal Discovery for Hierarchical Dialogue Policy Learning". EMNLP(2018) [paper]
- D3Q : "Discriminative Deep Dyna-Q: Robust Planning for Dialogue Policy Learning". EMNLP(2018) [paper] [code]
- DDQ : "Deep Dyna-Q: Integrating Planning for Task-Completion Dialogue Policy Learning". ACL(2018) [paper] [code]
- MAD : "Memory-augmented Dialogue Management for Task-oriented Dialogue Systems". TOIS(2018) [paper]
- TSCP : "Sequicity: Simplifying Task-oriented Dialogue Systems with Single Sequence-to-Sequence Architectures". ACL(2018) [paper] [code]
- Mem2Seq : "Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Oriented Dialog Systems". ACL(2018) [paper] [code]
- Topic-Seg-Label : "A Weakly Supervised Method for Topic Segmentation and Labeling in Goal-oriented Dialogues via Reinforcement Learning". IJCAI(2018) [paper] [code]
- AliMe : "AliMe Chat: A Sequence to Sequence and Rerank based Chatbot Engine". ACL(2017) [paper]
- KVR Net : "Key-Value Retrieval Networks for Task-Oriented Dialogue". SIGDIAL(2017) [paper] [data]
?回到顶部
Open-domain Dialogue
Long-term Dialogue
- THEANINE : "THEANINE: Revisiting Memory Management in Long-term Conversations with Timeline-augmented Response Generation". arXiv(2024) [paper]
- LD-Agent : "Hello Again! LLM-powered Personalized Agent for Long-term Dialogue". arXiv(2024) [paper] [code]
- CPD : "Position Debiasing Fine-Tuning for Causal Perception in Long-Term Dialogue". IJCAI(2024) [paper]
- TemporalMemory : "Toward Conversational Agents with Context and Time Sensitive Long-term Memory". arXiv(2024) [paper] [data]
- LoCoMo : "Evaluating Very Long-Term Conversational Memory of LLM Agents". ACL(2024) [paper] [data]
- Conversation Chronicles : "Conversation Chronicles: Towards Diverse Temporal and Relational Dynamics in Multi-Session Conversations". EMNLP(2023) [paper] [data]
- GapChat : "Mind the Gap Between Conversations for Improved Long-Term Dialogue Generation". EMNLP-Findings(2023) [paper] [data]
- UniMC : "UniMC: A Unified Framework for Long-Term Memory Conversation via Relevance Representation Learning". arXiv(2023) [paper]
- RS : "Recursively Summarizing Enables Long-Term Dialogue Memory in Large Language Models". arXiv(2023) [paper]
- MSC : "Beyond Goldfish Memory: Long-Term Open-Domain Conversation". ACL(2022) [paper] [data]
响应产生
- Overview : "Open-domain Dialogue Generation: What We Can Do, Cannot Do, And Should Do Next". ACL-NLP4ConvAI(2022) [paper]
- Chirpy Cardinal : "Neural Generation Meets Real People: Building a Social, Informative Open-Domain Dialogue Agent". SIGDIAL(2022) [paper] [code] [project]
- TIL : "Towards Efficient Dialogue Pre-training with Transferable and Interpretable Latent Structure". EMNLP(2022) [paper]
- ProphetChat : "ProphetChat: Enhancing Dialogue Generation with Simulation of Future Conversation". ACL(2022) [paper]
- DialoFlow : "Conversations Are Not Flat: Modeling the Dynamic Information Flow across Dialogue Utterances". ACL(2021) [paper] [code]
- DiSCoL : "DiSCoL: Toward Engaging Dialogue Systems through Conversational Line Guided Response Generation". NAACL(2021) [paper] [code]
- DialogBERT : "DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances". AAAI(2021) [paper]
- BlenderBot : "Recipes for Building an Open-Domain Chatbot". EACL(2021) [paper] [code]
- CDial-GPT : "A Large-Scale Chinese Short-Text Conversation Dataset". NLPCC(2020) [paper] [code]
- DialoGPT : "DialoGPT : Large-Scale Generative Pre-training for Conversational Response Generation". ACL(2020) [paper] [code]
- CG-Policy : "Conversational Graph Grounded Policy Learning for Open-Domain Conversation Generation". ACL(2020) [paper]
- PLATO-XL : "PLATO-XL: Exploring the Large-scale Pre-training of Dialogue Generation". arXiv(2021) [paper] [code]
- PLATO-2 : "PLATO-2: Towards Building an Open-Domain Chatbot via Curriculum Learning". ACL-Findings(2021) [paper] [code]
- PLATO : "PLATO: Pre-trained Dialogue Generation Model with Discrete Latent Variable". ACL(2020) [paper] [code]
- Guyu : "An Empirical Investigation of Pre-Trained Transformer Language Models for Open-Domain Dialogue Generation". arXiv(2020) [paper] [code]
- CL4Dialogue : "Group-wise Contrastive Learning for Neural Dialogue Generation". EMNLP-Findings(2020) [paper] [code]
- Neg-train : "Negative Training for Neural Dialogue Response Generation". ACL(2020) [paper] [code]
- HDSA : "Semantically Conditioned Dialog Response Generation via Hierarchical Disentangled Self-Attention". ACL(2019) [paper] [code]
- CAS : "Skeleton-to-Response: Dialogue Generation Guided by Retrieval Memory". NAACL(2019) [paper] [code]
- Edit-N-Rerank : "Response Generation by Context-aware Prototype Editing". AAAI(2019) [paper] [code]
- HVMN : "Hierarchical Variational Memory Network for Dialogue Generation". WWW(2018) [paper] [code]
- XiaoIce : "The Design and Implementation of XiaoIce, an Empathetic Social Chatbot". arXiv(2018) [paper]
- D2A : "Dialog-to-Action: Conversational Question Answering Over a Large-Scale Knowledge Base". NeurIPS(2018) [paper] [code]
- DAIM : "Generating Informative and Diverse Conversational Responses via Adversarial Information Maximization". NeurIPS(2018) [paper]
- REASON : "Dialog Generation Using Multi-turn Reasoning Neural Networks". NAACL(2018) [paper]
- STD/HTD : "Learning to Ask Questions in Open-domain Conversational Systems with Typed Decoders". ACL(2018) [paper] [code]
- CSF : "Generating Informative Responses with Controlled Sentence Function". ACL(2018) [paper] [code]
- DAWnet : "Chat More: Deepening and Widening the Chatting Topic via A Deep Model". SIGIR(2018) [paper] [code]
- ZSDG : "Zero-Shot Dialog Generation with Cross-Domain Latent Actions". SIGDIAL(2018) [paper] [code]
- DUA : "Modeling Multi-turn Conversation with Deep Utterance Aggregation". COLING(2018) [paper] [code]
- Data-Aug : "Sequence-to-Sequence Data Augmentation for Dialogue Language Understanding". COLING(2018) [paper] [code]
- DC-MMI : "Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints". EMNLP(2018) [paper] [code]
- cVAE-XGate/CGate : "Better Conversations by Modeling, Filtering, and Optimizing for Coherence and Diversity". EMNLP(2018) [paper] [code]
- Retrieval+multi-seq2seq : "An Ensemble of Retrieval-Based and Generation-Based Human-Computer Conversation Systems". IJCAI(2018) [paper]
- DAM : "Multi-Turn Response Selection for Chatbots with Deep Attention Matching Network". ACL(2018) [paper] [code]
- SMN : "Sequential Matching Network: A New Architecture for Multi-turn Response Selection in Retrieval-Based Chatbots". ACL(2017) [paper] [code]
- CVAE/KgCVAE : "Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders". ACL(2017) [paper] [code]
- TA-Seq2Seq : "Topic Aware Neural Response Generation". AAAI(2017) [paper] [code]
- MA : "Mechanism-Aware Neural Machine for Dialogue Response Generation". AAAI(2017) [paper]
- VHRED : "A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues". AAAI(2017) [paper] [code]
- HRED : "Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models". AAAI(2016) [paper] [code]
- RL-Dialogue : "Deep Reinforcement Learning for Dialogue Generation". EMNLP(2016) [paper]
- MMI : "A Diversity-Promoting Objective Function for Neural Conversation Models". NAACL(2016) [paper] [code]
?回到顶部
Dialogue Evaluation
- DialogBench : "DialogBench: Evaluating LLMs as Human-like Dialogue Systems". NAACL(2024) [paper] [code]
- ChatEval : "ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate". arXiv(2023) [paper] [code]
- ACCENT : "ACCENT: An Automatic Event Commonsense Evaluation Metric for Open-Domain Dialogue Systems". ACL(2023) [paper] [code]
- LLMEval : "Understanding the Effectiveness of Very Large Language Models on Dialog Evaluation". IWSDS(2023) [paper]
- ChatEvalPlatform : "Don't Forget Your ABC's: Evaluating the State-of-the-Art in Chat-Oriented Dialogue Systems". arXiv(2022) [paper] [code]
- MDD-Eval : "MDD-Eval: Self-Training on Augmented Data for Multi-Domain Dialogue Evaluation". AAAI(2022) [paper] [code]
- Self-Eval : "SelF-Eval: Self-supervised Fine-grained Dialogue Evaluation". COLING(2022) [paper] [code]
- FineD-Eval : "FineD-Eval: Fine-grained Automatic Dialogue-Level Evaluation". EMNLP(2022) [paper] [code]
- FlowEval : "FlowEval: A Consensus-Based Dialogue Evaluation Framework Using Segment Act Flows". EMNLP(2022) [paper]
- IM2 : "IM^2: an Interpretable and Multi-category Integrated Metric Framework for Automatic Dialogue Evaluation". EMNLP(2022) [paper] [code]
- Q^2 : "$Q^{2}$: Evaluating Factual Consistency in Knowledge-Grounded Dialogues via Question Generation and Question Answering". EMNLP(2021) [paper] [code]
- QuantiDCE : "Towards Quantifiable Dialogue Coherence Evaluation". ACL(2021) [paper] [code]
- DynaEval : "DynaEval: Unifying Turn and Dialogue Level Evaluation". ACL(2021) [paper] [code]
- Review : "How to Evaluate Your Dialogue Models: A Review of Approaches". arXiv(2021) [paper]
- ConvLabEval : "Is Your Goal-Oriented Dialog Model Performing Really Well? Empirical Analysis of System-wise Evaluation". SIGDIAL(2020) [paper]
- FED : "Unsupervised Evaluation of Interactive Dialog with DialoGPT". SIGDIAL(2020) [paper] [code] [data]
- Spot-the-Bot : "Spot The Bot: A Robust and Efficient Framework for the Evaluation of Conversational Dialogue Systems". EMNLP(2020) [paper] [code]
- CMADE : "Beyond User Self-Reported Likert Scale Ratings: A Comparison Model for Automatic Dialog Evaluation". ACL(2020) [paper] [code]
- Coherence : "Dialogue Coherence Assessment Without Explicit Dialogue Act Labels". ACL(2020) [paper] [code]
- MAUDE : "Learning an Unreferenced Metric for Online Dialogue Evaluation". ACL(2020) [paper] [code]
- GRADE : "GRADE: Automatic Graph-Enhanced Coherence Metric for Evaluating Open-Domain Dialogue Systems". ACL(2020) [paper] [code]
- uBLEU : "uBLEU: Uncertainty-Aware Automatic Evaluation Method for Open-Domain Dialogue Systems". ACL(2020) [paper] [code]
- USR : "USR: An Unsupervised and Reference Free Evaluation Metric for Dialog Generation". ACL(2020) [paper] [code]
- ACUTE-EVAL : "ACUTE-EVAL: Improved Dialogue Evaluation with Optimized Questions and Multi-turn Comparisons". NIPS ConvAI Workshop(2019) [paper] [code]
- InteractiveEval : "Approximating Interactive Human Evaluation with Self-Play for Open-Domain Dialog Systems". NeurIPS(2019) [paper] [code]
- ChatEval : "ChatEval: A Tool for Chatbot Evaluation". NAACL(2019) [paper] [project]
- ADVMT : "One
Ruler for All Languages: Multi-Lingual Dialogue Evaluation with Adversarial Multi-Task Learning". IJCAI(2018) [paper]
?回到顶部
Dialogue Misc.
- Signed-dialogue : "Generating Signed Language Instructions in Large-Scale Dialogue Systems". NAACL(2024) [paper] [data]
- Dialogue-KT : "Exploring Knowledge Tracing in Tutor-Student Dialogues". arXiv(2024) [paper] [code]
- MathDial : "MathDial: A Dialogue Tutoring Dataset with Rich Pedagogical Properties Grounded in Math Reasoning Problems". EMNLP-Findings(2023) [paper] [data]
- EduChat : "EduChat: A Large-Scale Language Model-based Chatbot System for Intelligent Education". arXiv(2023) [paper] [code]
- ACT : "Learning to Clarify: Multi-turn Conversations with Action-Based Contrastive Self-Training". arXiv(2024) [paper]
- ReviewMT : "Peer Review as A Multi-Turn and Long-Context Dialogue with Role-Based Interactions". arXiv(2024) [paper] [code]
- WildChat : "WildChat: 1M ChatGPT Interaction Logs in the Wild". ICLR(2024) [paper] [data]
- DialOp : "Decision-Oriented Dialogue for Human-AI Collaboration". arXiv(2023) [paper] [code]
- DialogStudio : "DialogStudio: Towards Richest and Most Diverse Unified Dataset Collection for Conversational AI". arXiv(2023) [paper] [code]
- MPC : "Multi-Party Chat: Conversational Agents in Group Settings with Humans and Models". arXiv(2023) [paper] [code]
- SODA : "SODA: Million-scale Dialogue Distillation with Social Commonsense Contextualization". EMNLP(2023) [paper] [code]
- speaker-adaptation : "Speaking the Language of Your Listener: Audience-Aware Adaptation via Plug-and-Play Theory of Mind". ACL-Findings(2023) [paper] [code]
- SocialDial : "SocialDial: A Benchmark for Socially-Aware Dialogue Systems". SIGIR(2023) [paper] [data]
- BotsTalk : "BotsTalk: Machine-sourced Framework for Automatic Curation of Large-scale Multi-skill Dialogue Datasets". EMNLP(2022) [paper] [code]
- Dialogic : "Dialogic: Controllable Dialogue Simulation with In-Context Learning". EMNLP-Findings(2022) [paper] [code]
- ProsocialDialog : "ProsocialDialog: A Prosocial Backbone for Conversational Agents". EMNLP(2022) [paper] [code]
- MIC : "The Moral Integrity Corpus: A Benchmark for Ethical Dialogue Systems". ACL(2022) [paper] [code]
- MoralDial : "MoralDial: A Framework to Train and Evaluate Moral Dialogue Systems via Constructing Moral Discussions". arXiv(2022) [paper]
- DECODE : "I like fish, especially dolphins: Addressing Contradictions in Dialogue Modeling". ACL(2021) [paper] [code]
?回到顶部
Natural Language Generation
Survey on NLG
- CTG : "A Survey of Controllable Text Generation using Transformer-based Pre-trained Language Models". arXiv(2022) [paper]
- RTG : "A Survey on Retrieval-Augmented Text Generation". arXiv(2022) [paper]
- Hallucination : "Survey of Hallucination in Natural Language Generation". arXiv(2022) [paper]
- Evaluation : "A Survey of Evaluation Metrics Used for NLG Systems". arXiv(2020) [paper]
?回到顶部
NLG Theories and Techniques
- RED : "Decoder-Only or Encoder-Decoder? Interpreting Language Model as a Regularized Encoder-Decoder". arXiv(2023) [paper]
- LaMemo : "LaMemo: Language Modeling with Look-Ahead Memory". NAACL(2022) [paper] [code]
- PTG : "Learning to Transfer Prompts for Text Generation". NAACL(2022) [paper] [code]
- EISL : "Don't Take It Literally: An Edit-Invariant Sequence Loss for Text Generation". NAACL(2022) [paper] [code]
- CT-Loss : "A Simple Contrastive Learning Objective for Alleviating Neural Text Degeneration". arXiv(2022) [paper] [code]
- SimCTG : "A Contrastive Framework for Neural Text Generation". NeurIPS(2022) [paper] [code]
- CoNT : "CoNT: Contrastive Neural Text Generation". NeurIPS(2022) [paper] [code]
- Two-level-CL : "Keywords and Instances: A Hierarchical Contrastive Learning Framework Unifying Hybrid Granularities for Text Generation". ACL(2022) [paper]
- CLAPS : "Contrastive Learning with Adversarial Perturbations for Conditional Text Generation". ICLR(2021) [paper] [code]
- RetGen : "RetGen: A Joint framework for Retrieval and Grounded Text Generation Modeling". AAAI(2022) [paper] [code]
- RAG : "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks". NeurIPS(2020) [paper] [code]
- TextGAIL : "TextGAIL: Generative Adversarial Imitation Learning for Text Generation". AAAI(2021) [paper] [code]
- Latent-GLAT : " latent -GLAT: Glancing at Latent Variables for Parallel Text Generation". ACL(2022) [paper] [code]
- s2s-ft : "s2s-ft: Fine-Tuning Pretrained Transformer Encoders for Sequence-to-Sequence Learning". arXiv(2021) [paper] [code]
- EBM : "Exposure Bias versus Self-Recovery: Are Distortions Really Incremental for Autoregressive Text Generation?". EMNLP(2021) [paper]
- DiscoDVT : "DiscoDVT: Generating Long Text with Discourse-Aware Discrete Variational Transformer". EMNLP(2021) [paper] [code]
- DATG : "Data Augmentation for Text Generation Without Any Augmented Data". ACL(2021) [paper]
- JointGT : "JointGT: Graph-Text Joint Representation Learning for Text Generation from Knowledge Graphs". ACL-Findings(2021) [paper] [code]
- Embedding-Transfer : "Bridging Subword Gaps in Pretrain-Finetune Paradigm for Natural Language Generation". ACL(2021) [paper] [code]
- FastSeq : "EL-Attention: Memory Efficient Lossless Attention for Generation". ICML(2021) [paper] [code]
- BERTSeq2Seq : "Leveraging Pre-trained Checkpoints for Sequence Generation Tasks". TACL(2020) [paper] [code-tf] [code-py]
- ERNIE-GEN : "ERNIE-GEN: An Enhanced Multi-Flow Pre-training and Fine-tuning Framework for Natural Language Generation". IJCAI(2020) [paper] [code]
- DITTO : "Learning to Break the Loop: Analyzing and Mitigating Repetitions for Neural Text Generation". NeurIPS(2022) [paper] [code]
- Repetition-Problem : "A Theoretical Analysis of the Repetition Problem in Text Generation". AAAI(2021) [paper] [code]
- ENCONTER : "ENCONTER: Entity Constrained Progressive Sequence Generation via Insertion-based Transformer". EACL(2021) [paper] [code]
- POINTER : "POINTER: Constrained Progressive Text Generation via Insertion-based Generative Pre-training". EMNLP(2020) [paper] [code]
- Cascaded Generation : "Cascaded Text Generation with Markov Transformers". NeurIPS(2020) [paper] [code]
- SFOT : "Improving Text Generation with Student-Forcing Optimal Transport". EMNLP(2020) [paper]
- OT-Seq2Seq : "Improving Sequence-to-Sequence Learning via Optimal Transport". ICLR(2019) [paper] [code]
?回到顶部
Diffusion Models for NLG
- RenderDiffusion : "RenderDiffusion: Text Generation as Image Generation". arXiv(2023) [paper]
- Masked-Diffusion-LM : "A Cheaper and Better Diffusion Language Model with Soft-Masked Noise". arXiv(2023) [paper] [code]
- discrete-diffusion : "A Reparameterized Discrete Diffusion Model for Text Generation". arXiv(2023) [paper] [code]
- Difformer : "Difformer: Empowering Diffusion Models on the Embedding Space for Text Generation". arXiv(2023) [paper]
- GENIE : "Text Generation with Diffusion Language Models: A Pre-training Approach with Continuous Paragraph Denoise". arXiv(2022) [paper] [code]
- SED : "Self-conditioned Embedding Diffusion for Text Generation". arXiv(2022) [paper]
- SSD-LM : "SSD-LM: Semi-autoregressive Simplex-based Diffusion Language Model for Text Generation and Modular Control". arXiv(2022) [paper] [code]
- LD4LG : "Latent Diffusion for Language Generation". arXiv(2022) [paper] [code]
- DiffusionBERT : "DiffusionBERT: Improving Generative Masked Language Models with Diffusion Models". arXiv(2022) [paper] [code]
- DiffusER : "DiffusER: Discrete Diffusion via Edit-based Reconstruction". arXiv(2022) [paper] [code]
- SeqDiffuSeq : "SeqDiffuSeq: Text Diffusion with Encoder-Decoder Transformers". arXiv(2022) [paper] [code]
- DiffuSeq : "DiffuSeq: Sequence to Sequence Text Generation with Diffusion Models". ICLR(2023) [paper] [code]
- Diffusion-LM : "Diffusion-LM Improves Controllable Text Generation". NeurIPS(2022) [paper] [code]
- D3PM : "Structured Denoising Diffusion Models in Discrete State-Spaces". NeurIPS(2021) [paper] [code]
?回到顶部
Controllable Generation
- ConGenBench : "Controllable Text Generation in the Instruction-Tuning Era". arXiv(2024) [paper] [code]
- GeLaTo : "Tractable Control for Autoregressive Language Generation". arXiv(2023) [paper]
- Cognac : "Controllable Text Generation with Language Constraints". arXiv(2022) [paper] [code]
- CriticControl : "Critic-Guided Decoding for Controlled Text Generation". arXiv(2022) [paper]
- LatentOps : "Composable Text Controls in Latent Space with ODEs". arXiv(2022) [paper] [code]
- FAST : "FAST: Improving Controllability for Text Generation with Feedback Aware Self-Training". arXiv(2022) [paper]
- DisCup : "DisCup: Discriminator Cooperative Unlikelihood Prompt-tuning for Controllable Text Generation". EMNLP(2022) [paper] [code]
- MultiControl : "A Distributional Lens for Multi-Aspect Controllable Text Generation". EMNLP(2022) [paper] [code]
- NADO : "Controllable Text Generation with Neurally-Decomposed Oracle". NeurIPS(2022) [paper] [code]
- Mix-Match : "Mix and Match: Learning-free Controllable Text Generation using Energy Language Models". ACL(2022) [paper] [code]
- ControlPrefix : "Controllable Natural Language Generation with Contrastive Prefixes". ACL-Findings(2022) [paper]
- MUCOCO : "Controlled Text Generation as Continuous Optimization with Multiple Constraints". NeurIPS(2021) [paper] [code]
- DExperts : "DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts". ACL(2021) [paper] [code]
- FUDGE : "FUDGE: Controlled Text Generation With Future Discriminators". NAACL(2021) [paper] [code]
- GeDi : "GeDi: Generative Discriminator Guided Sequence Generation". EMNLP-Findings(2021) [paper] [code]
- GDC : "A Distributional Approach to Controlled Text Generation". ICLR(2021) [paper] [code]
- CoCon : "CoCon: A Self-Supervised Approach for Controlled Text Generation". ICLR(2021) [paper] [code]
- PPLM : "Plug and Play Language Models: A Simple Approach to Controlled Text Generation". ICLR(2020) [paper] [code]
- CTRL : "CTRL: A Conditional Transformer Language Model for Controllable Generation". arXiv(2019) [paper] [code]
?回到顶部
Text Planning
- CoScript : "Distilling Script Knowledge from Large Language Models for Constrained Language Planning". ACL(2023) [paper] [code]
- RSTGen : "RSTGen: Imbuing Fine-Grained Interpretable Control into Long-FormText Generators". NAACL(2022) [paper]
- Time Control : "Language Modeling via Stochastic Processes". ICLR(2022) [paper] [code]
- PLANET : "PLANET: Dynamic Content Planning in Autoregressive Transformers for Long-form Text Generation". ACL(2022) [paper]
- EventPlan : "Event Transition Planning for Open-ended Text Generation". ACL-Findings(2022) [paper] [code]
- CETP : "Knowledge-based Review Generation by Coherence Enhanced Text Planning". SIGIR(2021) [paper]
- PlanGen : "Plan-then-Generate: Controlled Data-to-Text Generation via Planning". EMNLP-Findings(2021) [paper] [code]
- DYPLOC : "DYPLOC: Dynamic Planning of Content Using Mixed Language Models for Text Generation". ACL(2021) [paper] [code]
- Tree-PLAN : "Infobox-to-text Generation with Tree-like Planning based Attention Network". IJCAI(2020) [paper]
- ProphetNet : "ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training". EMNLP-Findings(2020) [paper] [code]
- PAIR : "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation". EMNLP(2020) [paper] [code]
- SentPlan : "Sentence-Level Content Planning and Style Specification for Neural Text Generation". EMNLP(2019) [paper] [code]
- PHVM : "Long and Diverse Text Generation with Planning-based Hierarchical Variational Model". EMNLP(2019) [paper] [code]
- TwinNet : "Twin Networks: Matching the Future for Sequence Generation". ICLR(2018) [paper] [code]
- PAG : "Plan, Attend, Generate: Planning for Sequence-to-Sequence Models". NIPS(2017) [paper]
?回到顶部
Decoding Algorithms
- Speculative Decoding : "Speculative Decoding: Exploiting Speculative Execution for Accelerating Seq2seq Generation". EMNLP-Findings(2023) [paper] [code]
- Medusa : "Medusa: Simple Framework for Accelerating LLM Generation with Multiple Decoding Heads". Github(2023) [Blog] [code]
- Lookahead Decoding : "Breaking the Sequential Dependency of LLM Inference Using Lookahead Decoding". LMSYS Org(2023) [Blog] [code]
- Speculative Sampling : "Accelerating Large Language Model Decoding with Speculative Sampling". arXiv(2023) [paper]
- Speculative Decoding : "Fast Inference from Transformers via Speculative Decoding". ICML(2023) [paper] [code]
- Parallel Decoding : "Accelerating Transformer Inference for Translation via Parallel Decoding". ACL(2023) [paper] [code]
- EAD : "The Stable Entropy Hypothesis and Entropy-Aware Decoding: An Analysis and Algorithm for Robust Natural Language Generation". arXiv(2023) [paper] [code]
- Contrastive Search : "Contrastive Search Is What You Need For Neural Text Generation". TMLR(2023) [paper] [code] [blog]
- Momentum Decoding : "Momentum Decoding: Open-ended Text Generation As Graph Exploration". arXiv(2022) [paper] [code]
- Crowd Sampling : "Follow the Wisdom of the Crowd: Effective Text Generation via Minimum Bayes Risk Decoding". arXiv(2022) [paper] [code]
- RankGen : "RankGen: Improving Text Generation with Large Ranking Models". EMNLP(2022) [paper] [code]
- Contrastive Decoding : "Contrastive Decoding: Open-ended Text Generation as Optimization". arXiv(2022) [paper] [code]
- COLD : "COLD Decoding: Energy-based Constrained Text Generation with Langevin Dynamics". NeurIPS(2022) [paper] [code]
- Lattice : "Massive-scale Decoding for Text Generation using Lattices". NAACL(2022) [paper] [code]
- KID : "Knowledge Infused Decoding". ICLR(2022) [paper] [code]
- NeuroLogic A*esque : "NeuroLogic A *esque Decoding: Constrained Text Generation with Lookahead Heuristics". NAACL(2022) [paper] [code]
- NeuroLogic : "NeuroLogic Decoding: (Un)supervised Neural Text Generation with Predicate Logic Constraints". NAACL(2021) [paper] [code]
- DeLorean : "Back to the Future: Unsupervised Backprop-based Decoding for Counterfactual and Abductive Commonsense Reasoning". EMNLP(2020) [paper] [code]
- Top-p (Nucleus) Sampling : "The Curious Case of Neural Text Degeneration". ICLR(2020) [paper] [code]
- BP Decoding : "Blockwise Parallel Decoding for Deep Autoregressive Models". NIPS(2018) [paper]
- Disjunctive Constraints : "Guided Generation of Cause and Effect". IJCAI(2020) [paper] [code-huggingface]
- CGMH : "CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling". AAAI(2019) [paper] [code]
- DBS : "Directed Beam Search: Plug-and-Play Lexically Constrained Language Generation". arXiv(2020) [paper] [code]
- DBA : "Fast Lexically Constrained Decoding with Dynamic Beam Allocation for Neural Machine Translation". NAACL(2018) [paper] [code-official] [code-fairseq]
- GBS : "Lexically Constrained Decoding for Sequence Generation Using Grid Beam Search". ACL(2017) [paper] [code]
?回到顶部
NLG Evaluation
- Survey : "Leveraging Large Language Models for NLG Evaluation: A Survey". arXiv(2024) [paper]
- BBScore : "BBScore: A Brownian Bridge Based Metric for Assessing Text Coherence". AAAI(2024) [paper]
- GPTEval : "GPTEval: NLG Evaluation using GPT-4 with Better Human Alignment". arXiv(2023) [paper]
- GPTScore : "GPTScore: Evaluate as You Desire". arXiv(2023) [paper] [code]
- RoMe : "RoMe: A Robust Metric for Evaluating Natural Language Generation". ACL(2022) [paper] [code]
- EAD : "Rethinking and Refining the Distinct Metric". ACL(2022) [paper] [code]
- MID : "Mutual Information Divergence: A Unified Metric for Multimodal Generative Models". NeurIPS(2022) [paper]
- DiscoScore : "DiscoScore: Evaluating Text Generation with BERT and Discourse Coherence". arXiv(2022) [paper] [code]
- CTC-Score : "Compression, Transduction, and Creation: A Unified Framework for Evaluating Natural Language Generation". EMNLP(2021) [paper] [code]
- BLEURT : "BLEURT: Learning Robust Metrics for Text Generation". ACL(2020) [paper] [code]
?回到顶部