RASA NLU (понимание естественного языка) - это инструмент для понимания естественной семантики. Например, официальный сайт заключается в следующем:
«Я ищу мексиканский ресторан в центре города»
И возвращение структурированных данных, таких как:
intent: search_restaurant
entities:
- cuisine : Mexican
- location : center
Первоначальный проект находится на филиале 0.2.7 и может быть свободно переключаться. Модификация этой версии основана на последней версии RASA. Оригинальный компонент в RASA_NLU_GAO был изменен, и никаких новых дополнений не было. Более того, предыдущие практики немного громоздки и не должны быть изменены в исходном коде RASA. Вы можете напрямую загрузить исходный компонент как аддон, наследовать последнюю версию RASA и обновить его в режиме реального времени.
Новые функции добавлены в настоящее время следующие (пожалуйста, загрузите последнюю версию Rasa-Nlu-Gao) (редактировать на 2019.06.24):
language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "CountVectorsFeaturizer"
token_pattern: "(?u)bw+b"
- name: "EmbeddingIntentClassifier"
- name: "rasa_nlu_gao.extractors.bilstm_crf_entity_extractor.BilstmCRFEntityExtractor"
lr: 0.001
char_dim: 100
lstm_dim: 100
batches_per_epoch: 10
seg_dim: 20
num_segs: 4
batch_size: 200
tag_schema: "iobes"
model_type: "bilstm" # 模型支持两种idcnn膨胀卷积模型或bilstm双向lstm模型
clip: 5
optimizer: "adam"
dropout_keep: 0.5
steps_check: 100
language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "CRFEntityExtractor"
- name: "rasa_nlu_gao.extractors.jieba_pseg_extractor.JiebaPsegExtractor"
part_of_speech: ["nr", "ns", "nt"]
- name: "CountVectorsFeaturizer"
OOV_token: oov
token_pattern: "(?u)bw+b"
- name: "EmbeddingIntentClassifier"
language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "CRFEntityExtractor"
- name: "JiebaPsegExtractor"
- name: "CountVectorsFeaturizer"
OOV_token: oov
token_pattern: '(?u)bw+b'
- name: "EmbeddingIntentClassifier"
- name: "rasa_nlu_gao.classifiers.entity_edit_intent.EntityEditIntent"
entity: ["nr"]
intent: ["enter_data"]
min_confidence: 0
language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "rasa_nlu_gao.featurizers.bert_vectors_featurizer.BertVectorsFeaturizer"
ip: '127.0.0.1'
port: 5555
port_out: 5556
show_server_config: True
timeout: 10000
- name: "EmbeddingIntentClassifier"
- name: "CRFEntityExtractor"
EmbeddingIntentClassifier и ner_bilstm_crf , два компонента, которые используют TensorFlow, настроены следующим образом (конечно, config_proto не может быть настроено, а значение по умолчанию будет использовать все ресурсы): COUNT, COUNTIN language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "CountVectorsFeaturizer"
token_pattern: '(?u)bw+b'
- name: "EmbeddingIntentClassifier"
config_proto: {
"device_count": 4,
"inter_op_parallelism_threads": 0,
"intra_op_parallelism_threads": 0,
"allow_growth": True
}
- name: "rasa_nlu_gao.extractors.bilstm_crf_entity_extractor.BilstmCRFEntityExtractor"
config_proto: {
"device_count": 4,
"inter_op_parallelism_threads": 0,
"intra_op_parallelism_threads": 0,
"allow_growth": True
}
embedding_bert_intent_classifier , и соответствующие файлы конфигурации следующие: language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "rasa_nlu_gao.featurizers.bert_vectors_featurizer.BertVectorsFeaturizer"
ip: '127.0.0.1'
port: 5555
port_out: 5556
show_server_config: True
timeout: 10000
- name: "rasa_nlu_gao.classifiers.embedding_bert_intent_classifier.EmbeddingBertIntentClassifier"
- name: "CRFEntityExtractor"
intent_estimator_classifier_tensorflow_embedding_bert Classifier, а соответствующий файл конфигурации в качестве следующего: в качестве следующего: в качестве следующего: language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "rasa_nlu_gao.featurizers.bert_vectors_featurizer.BertVectorsFeaturizer"
ip: '127.0.0.1'
port: 5555
port_out: 5556
show_server_config: True
timeout: 10000
- name: "rasa_nlu_gao.classifiers.embedding_bert_intent_estimator_classifier.EmbeddingBertIntentEstimatorClassifier"
- name: "SpacyNLP"
- name: "CRFEntityExtractor"
pip install rasa-nlu-gao
Для конкретных примеров см. RASA_CHATBOT_CN
LivePortraitWeb novell