rasa_nlu_gq
1.0.0
Rasa NLU(自然言語理解)は、自然のセマンティクスを理解するためのツールです。たとえば、公式ウェブサイトは次のとおりです。
「町の中心部にあるメキシコのレストランを探しています」
次のような構造化データを返します。
intent: search_restaurant
entities:
- cuisine : Mexican
- location : center
元のプロジェクトはBranch 0.2.7にあり、自由に切り替えることができます。このバージョンの変更は、RASAの最新バージョンに基づいています。 RASA_NLU_GAOの元のコンポーネントが変更されており、新しい追加は行われていません。さらに、以前のプラクティスは少し面倒で、RASAソースコードで変更する必要はありません。元のコンポーネントをアドオンとして直接読み込み、RASAの最新バージョンを継承し、リアルタイムで更新できます。
現在追加されている新機能は次のとおりです(最新のRASA-NLU-GAOバージョンをダウンロードしてください)(2019.06.24で編集):
language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "CountVectorsFeaturizer"
token_pattern: "(?u)bw+b"
- name: "EmbeddingIntentClassifier"
- name: "rasa_nlu_gao.extractors.bilstm_crf_entity_extractor.BilstmCRFEntityExtractor"
lr: 0.001
char_dim: 100
lstm_dim: 100
batches_per_epoch: 10
seg_dim: 20
num_segs: 4
batch_size: 200
tag_schema: "iobes"
model_type: "bilstm" # 模型支持两种idcnn膨胀卷积模型或bilstm双向lstm模型
clip: 5
optimizer: "adam"
dropout_keep: 0.5
steps_check: 100
language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "CRFEntityExtractor"
- name: "rasa_nlu_gao.extractors.jieba_pseg_extractor.JiebaPsegExtractor"
part_of_speech: ["nr", "ns", "nt"]
- name: "CountVectorsFeaturizer"
OOV_token: oov
token_pattern: "(?u)bw+b"
- name: "EmbeddingIntentClassifier"
language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "CRFEntityExtractor"
- name: "JiebaPsegExtractor"
- name: "CountVectorsFeaturizer"
OOV_token: oov
token_pattern: '(?u)bw+b'
- name: "EmbeddingIntentClassifier"
- name: "rasa_nlu_gao.classifiers.entity_edit_intent.EntityEditIntent"
entity: ["nr"]
intent: ["enter_data"]
min_confidence: 0
language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "rasa_nlu_gao.featurizers.bert_vectors_featurizer.BertVectorsFeaturizer"
ip: '127.0.0.1'
port: 5555
port_out: 5556
show_server_config: True
timeout: 10000
- name: "EmbeddingIntentClassifier"
- name: "CRFEntityExtractor"
EmbeddingIntentClassifier ner_bilstm_crf埋め込みます。 language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "CountVectorsFeaturizer"
token_pattern: '(?u)bw+b'
- name: "EmbeddingIntentClassifier"
config_proto: {
"device_count": 4,
"inter_op_parallelism_threads": 0,
"intra_op_parallelism_threads": 0,
"allow_growth": True
}
- name: "rasa_nlu_gao.extractors.bilstm_crf_entity_extractor.BilstmCRFEntityExtractor"
config_proto: {
"device_count": 4,
"inter_op_parallelism_threads": 0,
"intra_op_parallelism_threads": 0,
"allow_growth": True
}
embedding_bert_intent_classifier分類器が追加されており、対応する構成ファイルは次のとおりです。 language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "rasa_nlu_gao.featurizers.bert_vectors_featurizer.BertVectorsFeaturizer"
ip: '127.0.0.1'
port: 5555
port_out: 5556
show_server_config: True
timeout: 10000
- name: "rasa_nlu_gao.classifiers.embedding_bert_intent_classifier.EmbeddingBertIntentClassifier"
- name: "CRFEntityExtractor"
intent_estimator_classifier_tensorflow_embedding_bertクラシフィアを使用して、バックエンド分類器が完了します。 language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "rasa_nlu_gao.featurizers.bert_vectors_featurizer.BertVectorsFeaturizer"
ip: '127.0.0.1'
port: 5555
port_out: 5556
show_server_config: True
timeout: 10000
- name: "rasa_nlu_gao.classifiers.embedding_bert_intent_estimator_classifier.EmbeddingBertIntentEstimatorClassifier"
- name: "SpacyNLP"
- name: "CRFEntityExtractor"
pip install rasa-nlu-gao
特定の例については、rasa_chatbot_cnを参照してください
Liveportraitweb Novelling Whatnovel Omniparser Sexting comprimirmp4