Rasa NLU (compréhension du langage naturel) est un outil pour comprendre la sémantique naturelle. Par exemple, le site officiel est le suivant:
"Je recherche un restaurant mexicain dans le centre de la ville"
Et renvoyer des données structurées comme:
intent: search_restaurant
entities:
- cuisine : Mexican
- location : center
Le projet d'origine est sur la branche 0.2.7 et peut être commuté librement. La modification de cette version est basée sur la dernière version de RASA. Le composant d'origine de RASA_NLU_GAO a été modifié et aucun nouvel ajout n'a été fait. De plus, les pratiques précédentes sont un peu lourdes et n'ont pas besoin d'être modifiées dans le code source RASA. Vous pouvez charger directement le composant d'origine en tant qu'addon, hériter de la dernière version de RASA et le mettre à jour en temps réel.
Les nouvelles fonctionnalités actuellement ajoutées sont les suivantes (veuillez télécharger la dernière version Rasa-Nlu-Gao) (modifier en 2019.06.24):
language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "CountVectorsFeaturizer"
token_pattern: "(?u)bw+b"
- name: "EmbeddingIntentClassifier"
- name: "rasa_nlu_gao.extractors.bilstm_crf_entity_extractor.BilstmCRFEntityExtractor"
lr: 0.001
char_dim: 100
lstm_dim: 100
batches_per_epoch: 10
seg_dim: 20
num_segs: 4
batch_size: 200
tag_schema: "iobes"
model_type: "bilstm" # 模型支持两种idcnn膨胀卷积模型或bilstm双向lstm模型
clip: 5
optimizer: "adam"
dropout_keep: 0.5
steps_check: 100
language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "CRFEntityExtractor"
- name: "rasa_nlu_gao.extractors.jieba_pseg_extractor.JiebaPsegExtractor"
part_of_speech: ["nr", "ns", "nt"]
- name: "CountVectorsFeaturizer"
OOV_token: oov
token_pattern: "(?u)bw+b"
- name: "EmbeddingIntentClassifier"
language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "CRFEntityExtractor"
- name: "JiebaPsegExtractor"
- name: "CountVectorsFeaturizer"
OOV_token: oov
token_pattern: '(?u)bw+b'
- name: "EmbeddingIntentClassifier"
- name: "rasa_nlu_gao.classifiers.entity_edit_intent.EntityEditIntent"
entity: ["nr"]
intent: ["enter_data"]
min_confidence: 0
language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "rasa_nlu_gao.featurizers.bert_vectors_featurizer.BertVectorsFeaturizer"
ip: '127.0.0.1'
port: 5555
port_out: 5556
show_server_config: True
timeout: 10000
- name: "EmbeddingIntentClassifier"
- name: "CRFEntityExtractor"
EmbeddingIntentClassifier et ner_bilstm_crf , deux composants qui utilisent TensorFlow, sont configurés comme suit (bien sûr, Config_Proto ne peut pas être configuré, et la valeur par défaut utilisera toutes les ressources): Config_proto language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "CountVectorsFeaturizer"
token_pattern: '(?u)bw+b'
- name: "EmbeddingIntentClassifier"
config_proto: {
"device_count": 4,
"inter_op_parallelism_threads": 0,
"intra_op_parallelism_threads": 0,
"allow_growth": True
}
- name: "rasa_nlu_gao.extractors.bilstm_crf_entity_extractor.BilstmCRFEntityExtractor"
config_proto: {
"device_count": 4,
"inter_op_parallelism_threads": 0,
"intra_op_parallelism_threads": 0,
"allow_growth": True
}
embedding_bert_intent_classifier a été ajouté et les fichiers de configuration correspondants sont les suivants: language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "rasa_nlu_gao.featurizers.bert_vectors_featurizer.BertVectorsFeaturizer"
ip: '127.0.0.1'
port: 5555
port_out: 5556
show_server_config: True
timeout: 10000
- name: "rasa_nlu_gao.classifiers.embedding_bert_intent_classifier.EmbeddingBertIntentClassifier"
- name: "CRFEntityExtractor"
intent_estimator_classifier_tensorflow_embedding_bert classifier, et le fichier de configuration correspondant est le suivant: language: "zh"
pipeline:
- name: "JiebaTokenizer"
- name: "rasa_nlu_gao.featurizers.bert_vectors_featurizer.BertVectorsFeaturizer"
ip: '127.0.0.1'
port: 5555
port_out: 5556
show_server_config: True
timeout: 10000
- name: "rasa_nlu_gao.classifiers.embedding_bert_intent_estimator_classifier.EmbeddingBertIntentEstimatorClassifier"
- name: "SpacyNLP"
- name: "CRFEntityExtractor"
pip install rasa-nlu-gao
Pour des exemples spécifiques, veuillez consulter rasa_chatbot_cn
liveportraitweb Novelling whatnovel omniparser sexting comprimirmp4