モレロラ
オリジナルロラ:
$ w = w_0 + uv $そして $ rank(uv) leq r $
より良い初期化:
$ w = w_0 -u_0 {v_0} + uv $
添加剤:
$ w = w_0 + ui_ {r(1 times frac {n} {r})} + i_ {r( frac {m} {r} times 1)} v $どこ $ u in mathbb {r}^{m times r}、v in { mathbb {r}^{r times n}} $そして $ rank(uv) leq 2r $
Hadamard Mul Lora:
$ w = w_0 + odot_ {i = 1}^{i = k}( delta_i)$どこ $ delta_i = u_iv_i $
$ r '= frac {r} {k}、u_i in mathbb {r}^{m times r'} $ 、 $ v_i in mathbb {r}^{r ' times n} $そして $ rank( odot_ {i = 1}^{i = k}( delta_i^t)) leq( frac {r} {k})^k $
Hadamard Add lora:
$ w = w_0 + odot_ {i = 1}^{i = k}( delta_i)$どこ $ delta_i = u_ii_ {r '(1 times frac {n} {r'})}+i_ {r '( frac {m} {r'} times 1)} v_i $
$ r '= frac {r} {k} $ 、 $ u_i in mathbb {r}^{r ' times n} $ 、 $ v_i in mathbb {r}^{m times r '} $そして $ rank( odot_ {i = 1}^{i = k}( delta_i)) leq( frac {2r} {k})^k $
Hadamard Lora:活性化
$ delta = odot_ {i = 1}^{i = k}( tanh(u_iv_i^t))$
$ delta = odot_ {i = 1}^{i = k}( sigma(u_iv_i^t))$
ディロラ:
一連のランクをランダムに更新します
レイヤーの一部を更新します
参照:
@online { kexuefm-9590 ,
title = {梯度视角下的LoRA:简介、分析、猜测及推广} ,
author = {苏剑林} ,
year = { 2023 } ,
month = { Apr } ,
url = { url{https://spaces.ac.cn/archives/9590} } ,
} @misc { hyeonwoo2023fedpara ,
title = { FedPara: Low-Rank Hadamard Product for Communication-Efficient Federated Learning } ,
author = { Nam Hyeon-Woo and Moon Ye-Bin and Tae-Hyun Oh } ,
year = { 2023 } ,
eprint = { 2108.06098 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.LG }
}