MoreLoRA
Original LoRA:
$W = W_0 + UV$ and $rank(UV)leq r$
Better Initialization:
$W = W_0 - U_0{V_0} + UV$
Additive LoRA:
$W = W_0 + UI_{r(1times frac{n}{r})}+I_{r(frac{m}{r}times 1)}V$ where $Uin mathbb{R}^{mtimes r}, Vin{mathbb{R}^{r times n}}$ and $rank(UV)leq 2r$
Hadamard Mul LoRA:
$W = W_0 + odot_{i=1}^{i=k}(Delta_i)$ where $Delta_i = U_iV_i$
$r'= frac{r}{k},U_iinmathbb{R}^{mtimes r'}$, $V_iinmathbb{R}^{r'times n}$ and $rank(odot_{i=1}^{i=k}(Delta_i^T))leq (frac{r}{k})^k$
Hadamard Add LoRA:
$W = W_0 + odot_{i=1}^{i=k}(Delta_i)$ where $Delta_i = U_iI_{r'(1times frac{n}{r'})}+I_{r'(frac{m}{r'}times 1)}V_i$
$r'= frac{r}{k}$, $U_iinmathbb{R}^{r'times n}$, $V_iinmathbb{R}^{mtimes r'}$ and $rank(odot_{i=1}^{i=k}(Delta_i))leq (frac{2r}{k})^k$
Hadamard LoRA: Activation
$Delta = odot_{i=1}^{i=k}(tanh(U_iV_i^T))$
$Delta = odot_{i=1}^{i=k}(sigma(U_iV_i^T)) $
DyLoRA:
randomly update a series of ranks
Update part of the layers
Reference:
@online{kexuefm-9590,
title={梯度视角下的LoRA:简介、分析、猜测及推广},
author={苏剑林},
year={2023},
month={Apr},
url={url{https://spaces.ac.cn/archives/9590}},
}
@misc{hyeonwoo2023fedpara,
title={FedPara: Low-Rank Hadamard Product for Communication-Efficient Federated Learning},
author={Nam Hyeon-Woo and Moon Ye-Bin and Tae-Hyun Oh},
year={2023},
eprint={2108.06098},
archivePrefix={arXiv},
primaryClass={cs.LG}
}