Awesome Backbones
1.0.0
Bagaimana cara menghapus peningkatan? Jika train_pipeline dalam file konfigurasi efisiensiNetv2-b0 dapat diubah ke yang berikut
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=192,
efficientnet_style=True,
interpolation='bicubic'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
] Jika dataset Anda telah mengubah bentuk ke ukuran yang diminta jaringan di muka, operasi Resize juga dapat dihapus.
2024.09.06
2023.12.02
Menambahkan output yang disebutkan oleh banyak orang dalam masalah , latih ACC dan Val Train
metrics_outputs.csv menyimpan train_loss, train_acc, train_precision, train_recall, train_f1-score, val_loss, val_acc, val_precision, val_recall, val_f1-score untuk semua orang dapat menggambar 2023.08.05
2023.03.07
2022.11.20
| Dataset | Tutorial video | Grup Diskusi Teknologi Kecerdasan Buatan |
|---|---|---|
Kode Ekstraksi花卉数据集: 0zat | Klik saya untuk melompat | Kelompok 1: 78174903 Kelompok 3: 584723646 |
python tools/single_test.py datas/cat-dog.png models/mobilenet/mobilenet_v3_small.py --classes-map datas/imageNet1kAnnotation.txt| nama | Berat | nama | Berat | nama | Berat |
|---|---|---|---|---|---|
| Lenet5 | Tidak ada | Alexnet | Tidak ada | VGG | VGG-11 VGG-13 VGG-16 VGG-19 VGG-11-BN VGG-13-BN VGG-16-BN VGG-19-BN |
| Resnet | Resnet-18 ResNet-34 ResNet-50 Resnet-101 Resnet-152 | Resnetv1c | Resnetv1c-50 Resnetv1c-101 Resnetv1c-152 | Resnetv1d | Resnetv1d-50 Resnetv1d-101 Resnetv1d-152 |
| Resnext | Resnext-50 Resnext-101 Resnext-152 | Seresnet | Seresnet-50 Seresnet-101 | SeresNext | Tidak ada |
| Regnet | REGNETX-400MF REGNETX-800MF REGNETX-1.6GF REGNETX-3.2GF REGNETX-4.0GF REGNETX-6.4GF REGNETX-8.0GF REGNETX-12GF | MobileNetv2 | MobileNetv2 | MobileNetv3 | MOBILENETV3-SMALL MobileNetv3-Large |
| Shufflenetv1 | Shufflenetv1 | Shufflenetv2 | Shufflenetv2 | EfisienNet | EfisienNet-B0 Efisiensinet-B1 Efisiensinet-B2 EfisiensiNet-b3 EfisienNet-B4 EfisienNet-B5 EfisienNet-B6 EfisienNet-B7 EfisienNet-B8 |
| Repvgg | Repvgg-a0 Repvgg-a1 Repvgg-a2 Repvgg-b0 Repvgg-b1 Repvgg-a1 Repvgg-b1g2 Repvgg-b1g4 Repvgg-b2 Repvgg-b2g4 Repvgg-b2g4 Repvgg-b3 Repvgg-b3g4 Repvgg-d2se | Res2net | Res2net-50-14w-8s Res2net-50-26w-8s Res2net-101-26w-4s | ConvNext | ConvNext-Tiny ConvNext-Small Basis konvnext ConvNext-Large ConvNext-Xlarge |
| Hrnet | HRNET-W18 HRNET-W30 HRNET-W32 HRNET-W40 HRNET-W44 HRNET-W48 HRNET-W64 | Convmixer | Convmixer-768/32 Convmixer-1024/20 Convmixer-1536/20 | Cspnet | Cspdarknet50 Cspresnet50 CSPresNext50 |
| Swin Transformer | Tiny-224 Kecil-224 Base-224 -224 besar Base-384 Besar-384 | Transformator Visi | VIT_BASE_P16_224 VIT_BASE_P32_224 vit_large_p16_224 VIT_BASE_P16_384 VIT_BASE_P32_384 vit_large_p16_384 | Transformator dalam transformator | TNT-Small |
| Mixer MLP | base_p16 large_p16 | Deit | Deit-kecil Deit-kecil disuling Deit-small Deit-Small Distilled Deit-base Deit-base disuling DEIT-BASE 384PX DEIT-BASE Distilled 384px | Konformer | Conformer-Tiny-P16 Conformer-Small-p32 Conformer-Small-P16 Konformer-base-p16 |
| T2t-vit | T2T-VIT_T-14 T2T-VIT_T-19 T2T-VIT_T-24 | Saudara kembar | PCPVT-SMALL Basis pcpvt PCPVT-Large Svt-small SVT-BASE SVT-Large | Poolformer | Poolformer-S12 Poolformer-S24 Poolformer-S36 Poolformer-M36 Poolformer-M48 |
| Densenet | Densenet121 Densenet161 Densenet169 Densenet201 | Jaringan Perhatian Visual (Van) | Van-Tiny Van-Small Van-base Van-Large | RESNET LUAR BIASA | WRN-50 WRN-101 |
| Pikat | Hornet kecil Hornet-Tiny-GF Hornet-Small Hornet-Small-GF Basis hornet Hornet-Base-GF Hornet-Large Hornet-Large-GF Hornet-Large-GF384 | Lembaga yang efisien | EfisienFormer-L1 EfisienFormer-L3 EfisienFormer-L7 | Swin Transformer v2 | Jendela kecil-256 8 Jendela kecil-256 16 Jendela kecil-256 8 Jendela kecil-256 16 BASE-256 Jendela 8 BASE-256 Jendela 16 Jendela 256 besar 16 Jendela besar-384 24 |
| Mvitv2 | MVITV2-Tiny Mvitv2-small Mvitv2-base MVITV2-Large | MobileVit | MOBILEVIT-XXSMALL MOBILEVIT-XSMALL MobileVit-Small | Davit | Davit-t Davit-s Davit-b |
| REPLKNET | REPLKNET-31B-224 REPLKNET-31B-384 REPLKNET-31L-384 REPLKNET-XL | Beit | Basis beit | Eva | EVA-G-P14-224 EVA-G-P14-336 EVA-G-P14-560 EVA-G-P16-224 EVA-L-P14-224 EVA-L-P14-196 EVA-L-P14-336 |
| Mixmim | basis mixmim | EfisienNetv2 | EfisiensiNetv2-b0 EfisiensiNetv2-b1 EfisiensiNetv2-b2 EfisiensiNetv2-b3 Efisiensinetv2-s EfisiensiNetv2-m EfisienNetv2-l EfisienNetv2-xl | Deit3 | deit3_small_p16 deit3_small_p16_384 deit3_base_p16 deit3_base_p16_384 deit3_medium_p16 deit3_large_p16 deit3_large_p16_384 deit3_huge_p16 |
| Edgenext | edgeext-base edgeext-small edgeext-x-small edgeext-xx-small | RevVisionTransformer | revvit-small RevVit-base |
@repo{2020mmclassification,
title={OpenMMLab's Image Classification Toolbox and Benchmark},
author={MMClassification Contributors},
howpublished = {url{https://github.com/open-mmlab/mmclassification}},
year={2020}
}