Awesome Backbones
1.0.0
How to remove enhancements? If train_pipeline in efficientnetv2-b0 configuration file can be changed to the following
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=192,
efficientnet_style=True,
interpolation='bicubic'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
] If your dataset has changed shape to the network-required size in advance, the Resize operation can also be removed.
2024.09.06
2023.12.02
Added the outputs mentioned by many people in Issue , Train Acc and Val loss
metrics_outputs.csv saves train_loss, train_acc, train_precision, train_recall, train_f1-score, val_loss, val_acc, val_precision, val_recall, val_f1-score for everyone to draw 2023.08.05
2023.03.07
2022.11.20
| Dataset | Video tutorial | Artificial Intelligence Technology Discussion Group |
|---|---|---|
花卉数据集extraction code: 0zat | Click me to jump | Group 1: 78174903 Group 3: 584723646 |
python tools/single_test.py datas/cat-dog.png models/mobilenet/mobilenet_v3_small.py --classes-map datas/imageNet1kAnnotation.txt| name | Weight | name | Weight | name | Weight |
|---|---|---|---|---|---|
| LeNet5 | None | AlexNet | None | VGG | VGG-11 VGG-13 VGG-16 VGG-19 VGG-11-BN VGG-13-BN VGG-16-BN VGG-19-BN |
| ResNet | ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152 | ResNetV1C | ResNetV1C-50 ResNetV1C-101 ResNetV1C-152 | ResNetV1D | ResNetV1D-50 ResNetV1D-101 ResNetV1D-152 |
| ResNeXt | ResNeXt-50 ResNeXt-101 ResNeXt-152 | SEResNet | SEResNet-50 SEResNet-101 | SEResNeXt | None |
| RegNet | RegNetX-400MF RegNetX-800MF RegNetX-1.6GF RegNetX-3.2GF RegNetX-4.0GF RegNetX-6.4GF RegNetX-8.0GF RegNetX-12GF | MobileNetV2 | MobileNetV2 | MobileNetV3 | MobileNetV3-Small MobileNetV3-Large |
| ShuffleNetV1 | ShuffleNetV1 | ShuffleNetV2 | ShuffleNetV2 | EfficientNet | EfficientNet-B0 EfficientNet-B1 EfficientNet-B2 EfficientNet-B3 EfficientNet-B4 EfficientNet-B5 EfficientNet-B6 EfficientNet-B7 EfficientNet-B8 |
| RepVGG | RepVGG-A0 RepVGG-A1 RepVGG-A2 RepVGG-B0 RepVGG-B1 RepVGG-A1 RepVGG-B1g2 RepVGG-B1g4 RepVGG-B2 RepVGG-B2g4 RepVGG-B2g4 RepVGG-B3 RepVGG-B3g4 RepVGG-D2se | Res2Net | Res2Net-50-14w-8s Res2Net-50-26w-8s Res2Net-101-26w-4s | ConvNeXt | ConvNeXt-Tiny ConvNeXt-Small ConvNeXt-Base ConvNeXt-Large ConvNeXt-XLarge |
| HRNet | HRNet-W18 HRNet-W30 HRNet-W32 HRNet-W40 HRNet-W44 HRNet-W48 HRNet-W64 | ConvMixer | ConvMixer-768/32 ConvMixer-1024/20 ConvMixer-1536/20 | CSPNet | CSPDarkNet50 CSPResNet50 CSPResNeXt50 |
| Swin Transformer | tiny-224 small-224 base-224 large-224 base-384 large-384 | Vision Transformer | vit_base_p16_224 vit_base_p32_224 vit_large_p16_224 vit_base_p16_384 vit_base_p32_384 vit_large_p16_384 | Transformer in Transformer | TNT-small |
| MLP Mixer | base_p16 large_p16 | Deit | DeiT-tiny DeiT-tiny distilled DeiT-small DeiT-small distilled DeiT-base DeiT-base distilled DeiT-base 384px DeiT-base distilled 384px | Conformer | Conformer-tiny-p16 Conformer-small-p32 Conformer-small-p16 Conformer-base-p16 |
| T2T-ViT | T2T-ViT_t-14 T2T-ViT_t-19 T2T-ViT_t-24 | Twins | PCPVT-small PCPVT-base PCPVT-large SVT-small SVT-base SVT-large | PoolFormer | PoolFormer-S12 PoolFormer-S24 PoolFormer-S36 PoolFormer-M36 PoolFormer-M48 |
| DenseNet | DenseNet121 DenseNet161 DenseNet169 DenseNet201 | Visual Attention Network(VAN) | VAN-Tiny VAN-Small VAN-Base VAN-Large | Wide-ResNet | WRN-50 WRN-101 |
| HorNet | HorNet-Tiny HorNet-Tiny-GF HorNet-Small HorNet-Small-GF HorNet-Base HorNet-Base-GF HorNet-Large HorNet-Large-GF HorNet-Large-GF384 | EfficientFormer | efficientformer-l1 efficientformer-l3 efficientformer-l7 | Swin Transformer v2 | tiny-256 window 8 tiny-256 window 16 small-256 window 8 small-256 window 16 base-256 window 8 base-256 window 16 large-256 window 16 large-384 window 24 |
| MViTv2 | MViTv2-Tiny MViTv2-Small MViTv2-Base MViTv2-Large | MobileVit | MobileViT-XXSmall MobileViT-XSmall MobileViT-Small | DaViT | DaViT-T DaViT-S DaViT-B |
| RepLKNet | RepLKNet-31B-224 RepLKNet-31B-384 RepLKNet-31L-384 RepLKNet-XL | BEiT | BEiT-base | EVA | EVA-G-p14-224 EVA-G-p14-336 EVA-G-p14-560 EVA-G-p16-224 EVA-L-p14-224 EVA-L-p14-196 EVA-L-p14-336 |
| MixMIM | mixmim-base | EfficientNetV2 | EfficientNetV2-b0 EfficientNetV2-b1 EfficientNetV2-b2 EfficientNetV2-b3 EfficientNetV2-s EfficientNetV2-m EfficientNetV2-l EfficientNetV2-xl | DeiT3 | deit3_small_p16 deit3_small_p16_384 deit3_base_p16 deit3_base_p16_384 deit3_medium_p16 deit3_large_p16 deit3_large_p16_384 deit3_huge_p16 |
| EdgeNeXt | edgeext-base edgeext-small edgeext-X-small edgeext-XX-small | RevVisionTransformer | revvit-small revvit-base |
@repo{2020mmclassification,
title={OpenMMLab's Image Classification Toolbox and Benchmark},
author={MMClassification Contributors},
howpublished = {url{https://github.com/open-mmlab/mmclassification}},
year={2020}
}