
Aunque APM se está volviendo cada vez más popular, los fabricantes profesionales de APM de todos los tamaños han surgido como hongos después de una lluvia, y también hay muchos artículos técnicos sobre APM en el mercado, la mayoría de ellos son solo un sabor simple y no han profundizado en los detalles de implementación. Este artículo tiene como objetivo exponer el principio de trabajo interno del SDK iOS de los conocidos fabricantes de APM analizando los detalles de implementación específicos del SDK. Creo que antes de leer este artículo, los lectores también tenían curiosidad sobre los detalles de implementación del APM SDK al igual que el autor. Afortunadamente, el artículo que está leyendo lo llevará a descubrir el verdadero contexto de APM paso a paso. Los SDK de APM analizados en este artículo incluyen Tingyun , OnEapm y Firebase Performance Monitoring , etc. El autor es un poco talentoso y conocedor. Si hay algún error, no los corregirá para reimprimirlos y hacerlos más perfectos.
La versión de Tingyun SDK analizada en este artículo es 2.3.5, que es ligeramente diferente de la última versión. Sin embargo, leí aproximadamente el código de la nueva versión, pero la diferencia no es grande y no afecta el análisis.
El monitoreo de la representación de la página parece muy simple, pero aún habrá muchos problemas en el proceso de desarrollo real. Lo que es más fácil de pensar son varios métodos clave del ciclo de vida de las páginas de gancho, como viewDidLoad , viewDidAppear: etc., para calcular el tiempo de representación de la página y finalmente encontrar la página de carga lenta. Sin embargo, si realmente comienzas a lograrlo a través de las ideas anteriores, encontrarás dificultades. ¿Cómo puedo conectar el ciclo de vida de todas las páginas en el APM SDK? ¿Qué pasa si intento enganchar UIViewController ? El método de Hook UIViewController obviamente no es factible porque solo funciona en UIViewController , y la mayoría de los controladores de la vista en la aplicación Hereit desde UIViewController , por lo que este método no es factible. Pero se puede implementar Tingyun SDK. La lógica del gancho de página se implementa principalmente en la clase _priv_NBSUIAgent . La siguiente es la definición de la clase _priv_NBSUIAgent , entre las cuales hook_viewDidLoad y otros métodos son pistas.
@class _priv_NBSUIAgent : NSObject {
+hookUIImage
+hookNSManagedObjectContext
+hookNSJSONSerialization
+hookNSData
+hookNSArray
+hookNSDictionary
+hook_viewDidLoad:
+hook_viewWillAppear:
+hook_viewDidAppear:
+hook_viewWillLayoutSubviews:
+hook_viewDidLayoutSubviews:
+nbs_jump_initialize:
+hookSubOfController
+hookFMDB
+start
}
Primero dirigamos nuestra atención a otro método más sospechoso: hookSubOfController , la implementación específica es la siguiente:
void +[_priv_NBSUIAgent hookSubOfController](void * self, void * _cmd) {
r14 = self;
r12 = [_subMetaClassNamesInMainBundle_c("UIViewController") retain];
var_C0 = r12;
if ((r12 != 0x0) && ([r12 count] != 0x0)) {
var_C8 = object_getClass(r14);
if ([r12 count] != 0x0) {
r15 = @selector(nbs_jump_initialize:);
rdx = 0x0;
do {
var_98 = rdx;
r12 = [[r12 objectAtIndexedSubscript:rdx, rcx, r8] retain];
[r12 release];
if ([r12 respondsToSelector:r15, rcx, r8] == 0x0) {
_hookClass_CopyAMetaMethod();
}
r13 = class_getName(r12);
rax = [NSString stringWithFormat:@"nbs_%s_initialize", r13];
rax = [rax retain];
var_A0 = rax;
rax = NSSelectorFromString(rax);
var_B0 = rax;
rax = objc_retainBlock(__NSConcreteStackBlock);
var_A8 = rax;
r15 = objc_retainBlock(rax);
var_B8 = imp_implementationWithBlock(r15);
[r15 release];
rax = class_getSuperclass(r12);
r15 = objc_retainBlock(__NSConcreteStackBlock);
rbx = objc_retainBlock(r15);
r13 = imp_implementationWithBlock(rbx);
[rbx release];
rcx = r13;
r8 = var_B8;
_nbs_Swizzle_orReplaceWithIMPs(r12, @selector(initialize), var_B0, rcx, r8);
rdi = r15;
r15 = @selector(nbs_jump_initialize:);
[rdi release];
[var_A8 release];
[var_A0 release];
rax = [var_C0 count];
r12 = var_C0;
rdx = var_98 + 0x1;
} while (var_98 + 0x1 < rax);
}
}
[r12 release];
return;
}
Desde el nombramiento del parámetro _subMetaClassNamesInMainBundle_c y el parámetro entrante "UIViewController", se puede inferir básicamente que esta función C es una subclase de todos UIViewController en Mainbundle. De hecho, si se rompe el punto de ruptura de la línea de ensamblaje después de que se completa la llamada de función a través de LLDB, encontrará que la matriz devuelta es de hecho una subclase de UIViewController . La siguiente declaración if determina que el registro r12 no es nil y count del registro r12 no es igual a 0 antes de que se ejecute la lógica if . El registro r12 almacena el valor de retorno de la función _subMetaClassNamesInMainBundle_c , que es la matriz de UIViewController .
_subMetaClassNamesInMainBundle_c es el siguiente:
void _subMetaClassNamesInMainBundle_c(int arg0) {
rbx = objc_getClass(arg0);
rdi = 0x0;
if (rbx == 0x0) goto loc_10001dbde;
loc_10001db4d:
r15 = _classNamesInMainBundle_c(var_2C);
var_38 = [NSMutableArray new];
if (var_2C == 0x0) goto loc_10001dbd2;
loc_10001db77:
r14 = 0x0;
goto loc_10001db7a;
loc_10001db7a:
r13 = objc_getClass(*(r15 + r14 * 0x8));
r12 = r13;
if (r13 == 0x0) goto loc_10001dbc9;
loc_10001db8e:
rax = class_getSuperclass(r12);
if (rax == rbx) goto loc_10001dba5;
loc_10001db9b:
COND = rax != r12;
r12 = rax;
if (COND) goto loc_10001db8e;
loc_10001dbc9:
r14 = r14 + 0x1;
if (r14 < var_2C) goto loc_10001db7a;
loc_10001dbd2:
free(r15);
rdi = var_38;
goto loc_10001dbde;
loc_10001dbde:
[rdi autorelease];
return;
loc_10001dba5:
rax = class_getName(r13);
rax = objc_getMetaClass(rax);
[var_38 addObject:rax];
goto loc_10001dbc9;
}
La subrutina loc_10001db4d en _subMetaClassNamesInMainBundle_c llama a la función _classNamesInMainBundle_c , y el código de función es el siguiente:
int _classNamesInMainBundle_c(int arg0) {
rbx = [[NSBundle mainBundle] retain];
r15 = [[rbx executablePath] retain];
[rbx release];
rbx = objc_retainAutorelease(r15);
r14 = objc_copyClassNamesForImage([rbx UTF8String], arg0);
[rbx release];
rax = r14;
return rax;
}
La implementación de la función _classNamesInMainBundle_c es obvia, no es más que llamar objc_copyClassNamesForImage para obtener los nombres de todas las clases de mainBundle . El número de conjuntos se asigna a la variable outCount , y la persona que llama puede usar outCount para atravesarlo.
static inline char ** WDTClassNamesInMainBundle ( unsigned int *outCount) {
NSString *executablePath = [[ NSBundle mainBundle ] executablePath ];
char **classNames = objc_copyClassNamesForImage ([executablePath UTF8String ], outCount);
return classNames;
} Si no le importan los detalles, entonces la implementación de la función _subMetaClassNamesInMainBundle_c también es muy clara, lo que es atravesar el valor de retorno de la función objc_copyClassNamesForImage . Si el elemento es una subclase de UIViewController , entonces metaClass de la clase se obtiene y se agrega a la matriz variable var_38 .
A continuación, centrémonos en la instrucción do-while Loop en el interior. La declaración para el juicio de bucle es var_98 + 0x1 < rax . var_98 asigna el registro rdx al comienzo del bucle, y el registro rdx se inicializa a 0 fuera del bucle, por lo que var_98 es el contador, y el registro rax es count asignado al registro r12 . Basado en esto do-while en realidad está atravesando la matriz de UIViewController . El comportamiento transversal es intercambiar initialize y nbs_jump_initialize: métodos a través de _nbs_Swizzle_orReplaceWithIMPs .
El código para nbs_jump_initialize es el siguiente:
void +[_priv_NBSUIAgent nbs_jump_initialize:](void * self, void * _cmd, void * arg2) {
rbx = arg2;
r15 = self;
r14 = [NSStringFromSelector(rbx) retain];
if ((r14 != 0x0) && ([r14 isEqualToString:@""] == 0x0)) {
[r15 class];
rax = _nbs_getClassImpOf();
(rax)(r15, @selector(initialize));
}
rax = class_getName(r15);
r13 = [[NSString stringWithUTF8String:rax] retain];
rdx = @"_Aspects_";
if ([r13 hasSuffix:rdx] == 0x0) goto loc_100050137;
loc_10005011e:
if (*(int8_t *)_is_tiaoshi_kai == 0x0) goto loc_100050218;
loc_10005012e:
rsi = cfstring__V__A;
goto loc_100050195;
loc_100050195:
__NBSDebugLog(0x3, rsi, rdx, rcx, r8, r9, stack[2048]);
goto loc_100050218;
loc_100050218:
[r13 release];
rdi = r14;
[rdi release];
return;
loc_100050137:
rdx = @"RACSelectorSignal";
if ([r13 hasSuffix:rdx] == 0x0) goto loc_10005016b;
loc_100050152:
if (*(int8_t *)_is_tiaoshi_kai == 0x0) goto loc_100050218;
loc_100050162:
rsi = cfstring__V__R;
goto loc_100050195;
loc_10005016b:
if (_classSelf_isImpOf(r15, "nbs_vc_flag") == 0x0) goto loc_1000501a3;
loc_10005017e:
if (*(int8_t *)_is_tiaoshi_kai == 0x0) goto loc_100050218;
loc_10005018e:
rsi = cfstring____Yh;
goto loc_100050195;
loc_1000501a3:
rbx = objc_retainBlock(void ^(void * _block, void * arg1) {
return;
});
rax = imp_implementationWithBlock(rbx);
class_addMethod(r15, @selector(nbs_vc_flag), rax, "v@:");
[rbx release];
[_priv_NBSUIAgent hook_viewDidLoad:r15];
[_priv_NBSUIAgent hook_viewWillAppear:r15];
[_priv_NBSUIAgent hook_viewDidAppear:r15];
goto loc_100050218;
}
El código de nbs_jump_initialize es un poco largo, pero de la rutina de loc_1000501a3 , se puede observar que la lógica principal ejecutará tres métodos, hook_viewDidLoad , hook_viewWillAppear y hook_viewDidAppear ,, enriqueciendo estos tres métodos de UIViewController .
Primero, use hook_viewDidLoad: Método como ejemplo para explicar. El siguiente código puede ser un poco oscuro y requiere un análisis cuidadoso.
void +[_priv_NBSUIAgent hook_viewDidLoad:](void * self, void * _cmd, void * arg2) {
rax = [_priv_NBSUIHookMatrix class];
var_D8 = _nbs_getInstanceImpOf();
var_D0 = _nbs_getInstanceImpOf();
rbx = class_getName(arg2);
r14 = class_getSuperclass(arg2);
rax = [NSString stringWithFormat:@"nbs_%s_viewDidLoad", rbx];
rax = [rax retain];
var_B8 = rax;
var_C0 = NSSelectorFromString(rax);
r12 = objc_retainBlock(__NSConcreteStackBlock);
var_D0 = imp_implementationWithBlock(r12);
[r12 release];
rbx = objc_retainBlock(__NSConcreteStackBlock);
r14 = imp_implementationWithBlock(rbx);
[rbx release];
_nbs_Swizzle_orReplaceWithIMPs(arg2, @selector(viewDidLoad), var_C0, r14, var_D0);
[var_B8 release];
return;
}
hook_viewDidLoad: el parámetro arg2 en el método es la clase del ViewController para que se conecte, obtenga el nombre de clase de arg2 y lo asigne al registro rbx , y luego use rbx para construir la cadena nbs_%s_viewDidLoad , como nbs_XXViewController_viewDidLoad , obtenga el selector de la cadena y la asignación a var_C0 . __NSConcreteStackBlock en las siguientes oraciones es el objeto de bloque de la pila de almacenamiento creado. Este bloque obtendrá el puntero de la función IMP a través del método imp_implementationWithBlock . _nbs_Swizzle_orReplaceWithIMPs es una función que implementa el intercambio de métodos, y los parámetros son: arg2 es la clase de ViewController ; @selector(viewDidLoad) es el selector de viewDidLoad ; var_C0 es el selector de nbs_%s_viewDidLoad , r14 es el IMP del segundo __NSConcreteStackBlock ; var_D0 es el IMP del primer __NSConcreteStackBlock .
Toda la lógica de hook_viewDidLoad: está más o menos claro, pero hay una pregunta aquí ¿por qué no intercambiar directamente dos imps, sino construir dos bloques primero y luego intercambiar los imps de dos bloques? La razón es que el resultado de la clase principal de ViewController , es decir, class_getSuperclass , debe pasar como parámetros al método intercambiado. De esta manera, el número de parámetros firmados por los dos selectores intercambiados es inconsistente, y este problema debe resolverse inteligentemente construyendo un bloque. De hecho, el primer __NSConcreteStackBlock ejecuta nbs_jump_viewDidLoad:superClass: Método de _priv_NBSUIHookMatrix . Como se mencionó anteriormente, hay superClass en los parámetros de este método. En cuanto a por qué se necesita este parámetro, lo presentaré más tarde.
¿Por qué el segundo __NSConcreteStackBlock ejecuta nbs_jump_viewDidLoad:superClass: :? Desactivar la opción de Remove potentially dead code de Hopper, el código es el siguiente:
void +[_priv_NBSUIAgent hook_viewDidLoad:](void * self, void * _cmd, void * arg2) {
rsi = _cmd;
rdi = self;
r12 = _objc_msgSend;
rax = [_priv_NBSUIHookMatrix class];
rsi = @selector(nbs_jump_viewDidLoad:superClass:);
rdi = rax;
var_D8 = _nbs_getInstanceImpOf();
rdi = arg2;
rsi = @selector(viewDidLoad);
var_D0 = _nbs_getInstanceImpOf();
rbx = class_getName(arg2);
r14 = class_getSuperclass(arg2);
LODWORD(rax) = 0x0;
rax = [NSString stringWithFormat:@"nbs_%s_viewDidLoad", rbx];
rax = [rax retain];
var_B8 = rax;
var_C0 = NSSelectorFromString(rax);
var_60 = 0xc0000000;
var_5C = 0x0;
var_58 = ___37+[_priv_NBSUIAgent hook_viewDidLoad:]_block_invoke;
var_50 = ___block_descriptor_tmp;
var_48 = var_D8;
var_40 = @selector(viewDidLoad);
var_38 = var_D0;
var_30 = r14;
r12 = objc_retainBlock(__NSConcreteStackBlock);
var_D0 = imp_implementationWithBlock(r12);
r13 = _objc_release;
rax = [r12 release];
var_A8 = 0xc0000000;
var_A4 = 0x0;
var_A0 = ___37+[_priv_NBSUIAgent hook_viewDidLoad:]_block_invoke_2;
var_98 = ___block_descriptor_tmp47;
var_90 = rbx;
var_88 = var_D8;
var_80 = @selector(viewDidLoad);
var_78 = r14;
var_70 = arg2;
rbx = objc_retainBlock(__NSConcreteStackBlock);
r14 = imp_implementationWithBlock(rbx);
rax = [rbx release];
rax = _nbs_Swizzle_orReplaceWithIMPs(arg2, @selector(viewDidLoad), var_C0, r14, var_D0);
rax = [var_B8 release];
rsp = rsp + 0xb8;
rbx = stack[2047];
r12 = stack[2046];
r13 = stack[2045];
r14 = stack[2044];
r15 = stack[2043];
rbp = stack[2042];
return;
}
Veamos el código de _nbs_getInstanceImpOf :
void _nbs_getInstanceImpOf() {
rax = class_getInstanceMethod(rdi, rsi);
method_getImplementation(rax);
return;
}
La función de la función _nbs_getInstanceImpOf es muy obvia. Para obtener el IMP del selector rsi en rdi , los lectores encontrarán que _nbs_getInstanceImpOf se ha llamado dos veces en hook_viewDidLoad: :. El primer rdi es la clase _priv_NBSUIHookMatrix , rdx es @selector(nbs_jump_viewDidLoad:superClass:) , el segundo rdi es ViewController rdx es @selector(viewDidLoad) .
A continuación, veamos el primer __NSConcreteStackBlock , que significa el bloque que llamará nbs_jump_viewDidLoad:superClass: El código es el siguiente:
int ___37+[_priv_NBSUIAgent hook_viewDidLoad:]_block_invoke(int arg0, int arg1) {
r8 = *(arg0 + 0x20);
rax = *(arg0 + 0x28);
rdx = *(arg0 + 0x30);
rcx = *(arg0 + 0x38);
rax = (r8)(arg1, rax, rdx, rcx, r8);
return rax;
}
El registro r8 es el IMP de nbs_jump_viewDidLoad:superClass: y este código solo llama a este IMP. Los parámetros de la función IMP son los mismos que nbs_jump_viewDidLoad:superClass: :.
void -[_priv_NBSUIHookMatrix nbs_jump_viewDidLoad:superClass:](void * self, void * _cmd, void * * arg2, void * arg3) {
rbx = arg3;
var_70 = arg2;
var_68 = _cmd;
r14 = self;
rax = [self class];
rax = class_getSuperclass(rax);
if ((rbx != 0x0) && (rax != rbx)) {
rax = var_70;
if (rax != 0x0) {
rdi = r14;
(rax)(rdi, @selector(viewDidLoad));
}
else {
NSLog(@"");
[[r14 super] viewDidLoad];
}
}
else {
var_B8 = rbx;
objc_storeWeak(_currentViewController, 0x0);
r14 = 0x0;
[[NSString stringWithFormat:@"%d#loading", 0x0] retain];
r12 = 0x0;
if (0x0 != 0x0) {
rcx = class_getName([r12 class]);
r14 = [[NSString stringWithFormat:@"MobileView/Controller/%s#%@", rcx, @"loading"] retain];
}
var_A0 = r14;
r14 = [[_priv_NBSUILogCenter_assistant alloc] initWithControllerName:r14];
var_80 = r14;
var_60 = _objc_release;
[r14 setTheVC:_objc_release];
[r14 setVC_Address:_objc_release];
[r14 setIsOther:0x0];
[*_controllerStack push:r14];
rbx = [_glb_all_activing_VCS() retain];
var_98 = _objc_msgSend;
[rbx setObject:r14 forKey:_objc_msgSend];
[rbx release];
r12 = [[NSDate date] retain];
[r12 timeIntervalSince1970];
xmm0 = intrinsic_mulsd(xmm0, *0x100066938);
rbx = intrinsic_cvttsd2si(rbx, xmm0);
[r12 release];
[r14 setStartTime:rbx];
rcx = class_getName([var_60 class]);
r13 = [[NSString stringWithFormat:@"%s", rcx] retain];
r14 = [NSStringFromSelector(var_68) retain];
var_88 = [_nbs_embedIn_start() retain];
[r14 release];
[r13 release];
rbx = [[NBSLensInterfaceEventLogger shareObject] retain];
var_78 = rbx;
rax = [NBSLensUITraceSegment new];
var_58 = rax;
rbx = [[rbx theStack] retain];
[rbx push:rax];
[rbx release];
rcx = class_getName([var_60 class]);
r13 = [[NSString stringWithFormat:@"%s", rcx] retain];
r12 = [NSStringFromSelector(var_68) retain];
r14 = [[NSString stringWithFormat:@"%@#%@", r13, r12] retain];
var_A8 = r14;
[r12 release];
rdi = r13;
[rdi release];
[var_58 setSegmentName:r14];
rax = [NSDictionary dictionary];
rax = [rax retain];
var_B0 = rax;
[var_58 setSegmentParam:rax];
rbx = [[NSThread currentThread] retain];
rdx = rbx;
[var_58 setThreadInfomation:rdx];
[rbx release];
rbx = [[NSDate date] retain];
[rbx timeIntervalSince1970];
xmm0 = intrinsic_mulsd(xmm0, *0x100066938);
var_68 = intrinsic_movsd(var_68, xmm0);
[rbx release];
xmm0 = intrinsic_movsd(xmm0, var_68);
[var_58 setStartTime:rdx];
[var_58 setEntryTime:0x0];
r14 = [NBSLensUITraceSegment new];
var_90 = r14;
xmm0 = intrinsic_movsd(xmm0, var_68);
[r14 setStartTime:0x0];
rcx = class_getName([var_60 class]);
r15 = [[NSString stringWithFormat:@"%s", rcx] retain];
rbx = [[NSString stringWithFormat:@"%@#viewLoading", r15] retain];
[r14 setSegmentName:rbx];
[rbx release];
[r15 release];
rcx = var_30;
rax = [NSDictionary dictionaryWithObjects:rbx forKeys:rcx count:0x0];
[r14 setSegmentParam:rax];
rbx = [[NSThread currentThread] retain];
[r14 setThreadInfomation:rbx];
[rbx release];
[r14 setEntryTime:0x0];
rax = var_70;
if (rax != 0x0) {
(rax)(var_60, @selector(viewDidLoad), 0x0, rcx, 0x0);
}
else {
NSLog(@"");
[[var_60 super] viewDidLoad];
}
_nbs_embedIn_finish();
rdx = [var_88 mach_tm2];
[var_80 setFinishTime:rdx];
rbx = [[NSDate date] retain];
[rbx timeIntervalSince1970];
xmm0 = intrinsic_mulsd(xmm0, *0x100066938);
var_70 = intrinsic_movsd(var_70, xmm0);
[rbx release];
xmm0 = intrinsic_movsd(xmm0, var_70);
xmm0 = intrinsic_subsd(xmm0, var_68);
rdx = intrinsic_cvttsd2si(rdx, xmm0);
[var_58 setExitTime:rdx];
rbx = [[var_78 theStack] retain];
rax = [rbx pop];
rax = [rax retain];
[rax release];
[rbx release];
rbx = [[var_78 theStack] retain];
r15 = [rbx isEmpty];
[rbx release];
if (r15 == 0x0) {
rbx = [[var_78 theStack] retain];
r14 = [[rbx peer] retain];
[rbx release];
[r14 startTime];
xmm1 = intrinsic_movsd(xmm1, var_68);
xmm1 = intrinsic_subsd(xmm1, xmm0);
rdx = intrinsic_cvttsd2si(rdx, xmm1);
[var_58 setEntryTime:rdx];
[r14 startTime];
rdx = intrinsic_cvttsd2si(rdx, intrinsic_subsd(intrinsic_movsd(xmm1, var_70), xmm0));
[var_58 setExitTime:rdx];
rbx = [[r14 childSegments] retain];
rdx = var_58;
[rbx addObject:rdx];
[rbx release];
[r14 release];
}
rbx = [[var_90 childSegments] retain];
[rbx addObject:var_58];
[rbx release];
objc_setAssociatedObject(var_60, @"viewLoading", var_90, 0x1);
rax = [*_controllerStack pop];
rax = [rax retain];
[rax release];
rbx = [[_priv_NBSLENS_VCSBuffer sharedObj] retain];
[rbx addObj:var_80];
[rbx release];
rbx = [_glb_all_activing_VCS() retain];
[rbx removeObjectForKey:var_98];
[rbx release];
[var_90 release];
[var_B0 release];
[var_A8 release];
[var_58 release];
[var_78 release];
[var_88 release];
[var_80 release];
[var_A0 release];
[var_98 release];
}
return;
}
El tiempo de inicio se explica con el SDK de monitoreo de rendimiento de Firebase como ejemplo. El FPM SDK se usa como abreviatura para describirlo. El FPM SDK implementa estadísticas en el tiempo de inicio del frío, y la lógica principal se implementa en FPRAppActivityTracker .
Primero mire el método +load de la clase, y el código de descompilación es el siguiente:
void +[FPRAppActivityTracker load](void * self, void * _cmd) {
rax = [NSDate date];
rax = [rax retain];
rdi = *_appStartTime;
*_appStartTime = rax;
[rdi release];
rbx = [[NSNotificationCenter defaultCenter] retain];
[rbx addObserver:self selector:@selector(windowDidBecomeVisible:) name:*_UIWindowDidBecomeVisibleNotification object:0x0];
rdi = rbx;
[rdi release];
return;
}
Obviamente, _appStartTime es una instancia NSDate estática utilizada para ahorrar la hora de inicio de todo el inicio de la aplicación, por lo que el FPM SDK marca la hora de inicio del inicio de la aplicación en la +load de FPRAppActivityTracker . Los lectores que entienden el método +load deben saber que el método es un método de gancho antes de que se llame main . La hora exacta es cuando la imagen se carga en tiempo de ejecución y el método +load está listo, y luego se comenzará a llamar +load . Además, diferentes tipos de métodos +load también están relacionados con el orden de archivo de Build Phases->Compile Sources . Creemos que estos no tienen un impacto significativo en las estadísticas del tiempo de inicio.
Posteriormente, se registra la notificación de UIWindowDidBecomeVisibleNotification . Esta notificación se activa cuando UIWindow se activa y se muestra en la interfaz. Los lectores pueden registrar esta notificación y luego imprimir el objeto de notificación con LLDB. El ejemplo es el siguiente:
NSConcreteNotification 0x7fc94a716f50 {name = UIWindowDidBecomeVisibleNotification; object = <UIStatusBarWindow: 0x7fc94a5092a0; frame = (0 0; 320 568); opaque = NO; gestureRecognizers = <NSArray: 0x7fc94a619f30>; layer = <UIWindowLayer: 0x7fc94a513f50>>}
La primera vez que recibí la notificación de UIWindowDidBecomeVisibleNotification fue anterior a - application:didFinishLaunchingWithOptions: devolución de llamada, esta notificación se activó cuando se creó window de la barra de estado. Esta implementación se siente un poco complicada y no puede garantizar que Apple ajuste el momento de la llamada en el futuro.
A continuación se muestra la descripción oficial de UIWindowDidBecomeVisibleNotification .
Publicado cuando un objeto Uiwindow se vuelve visible. El objeto de notificación es el objeto de la ventana que se ha vuelto visible. Esta notificación no contiene un diccionario UserInfo. El cambio entre aplicaciones no genera notificaciones relacionadas con la visibilidad para Windows. Los cambios en la visibilidad de la ventana reflejan los cambios en la propiedad oculta de la ventana y reflejan solo la visibilidad de la ventana dentro de la aplicación.
El siguiente es el método de manejo de notificaciones. Restauré el método a Objective-C Pseudocode, que puede comparar el código de pseudo descompilado.
void +[FPRAppActivityTracker windowDidBecomeVisible:](void * self, void * _cmd, void * arg2) {
var_30 = self;
r13 = _objc_msgSend;
r12 = [[self sharedInstance] retain];
[r12 startAppActivityTracking];
rbx = [[FIRTrace alloc] initInternalTraceWithName:@"_as"];
[r12 setAppStartTrace:rbx];
[rbx release];
r15 = @selector(appStartTrace);
rbx = [_objc_msgSend(r12, r15) retain];
[rbx startWithStartTime:*_appStartTime];
[rbx release];
rbx = [_objc_msgSend(r12, r15) retain];
rcx = *_appStartTime;
rdx = @"_astui";
[rbx startStageNamed:rdx startTime:rcx];
[rbx release];
rax = *(int8_t *)_windowDidBecomeVisible:.FDDStageStarted;
rax = rax & 0x1;
COND = rax != 0x0;
if (!COND) {
r13 = _objc_msgSend;
rcx = *_appStartTime;
rbx = [_objc_msgSend(r12, r15, rdx, rcx) retain];
rdx = @"_astfd";
[rbx startStageNamed:rdx, rcx];
[rbx release];
*(int8_t *)_windowDidBecomeVisible:.FDDStageStarted = 0x1;
}
rbx = [(r13)(@class(NSNotificationCenter), @selector(defaultCenter), rdx, *_UIWindowDidBecomeVisibleNotification) retain];
(r13)(rbx, @selector(removeObserver:name:object:), var_30, *_UIWindowDidBecomeVisibleNotification, 0x0);
[rbx release];
rdi = r12;
[rdi release];
return;
}
+ (void)windowDidBecomeVisible:(NSNotification *)notification {
FPRAppActivityTracker *tracker = [self sharedInstance];
[tracker startAppActivityTracking];
FIRTrace *trace = [[FIRTrace alloc] initInternalTraceWithName:@"_as"];
[tracker setAppStartTrace: trace];
[[tracker appStartTrace] startWithStartTime:_appStartTime];
[[tracker appStartTrace] startStageNamed:@"_astui" startTime:_appStartTime];
if (_windowDidBecomeVisible:.FDDStageStarted) {
[[tracker appStartTrace] startStageNamed:@"_astfd" startTime:_appStartTime];
_windowDidBecomeVisible:.FDDStageStarted = 1;
}
[[NSNotificationCenter defaultCenter] removeObserver:self name:UIWindowDidBecomeVisibleNotification object:nil];
}
El método registrará la notificación de UIWindowDidBecomeVisibleNotification al final, porque la notificación se llamará varias veces, y solo necesitamos que lo ejecute una vez. Primero, llame al método -startAppActivityTracking para comenzar a rastrear la actividad de la aplicación. Este método se discutirá en profundidad más adelante.
En primer lugar, tenemos claro que las solicitudes de red que estamos discutiendo aquí no tienen instrucciones especiales para consultar las solicitudes HTTP. Tingyun SDK utiliza principalmente dos métodos para implementar el monitoreo de la red: el primero es enganchar la API utilizada por la programación de redes iOS, que se dirige principalmente a las solicitudes de red nativas; El segundo es heredar NSURLProtocol para implementar solicitudes de red, que se dirige principalmente a las solicitudes de red en UIWebView.
El SDK engancha a la API para construir NSURLSessionDataTask , NSURLSessionUploadTask y NSURLSessionDownloadTask en todas las solicitudes de red. La lógica del gancho está en la función C _nbs_hook_NSURLSession , y el pseudo-código es el siguiente:
int _nbs_hook_NSURLSession() {
_nbs_hook_NSURLSessionTask();
r13 = [[_priv_NSURLSession_NBS class] retain];
r14 = [objc_getClass("NSURLSession") retain];
r15 = [objc_getMetaClass(class_getName(r13)) retain];
r12 = [objc_getMetaClass("NSURLSession") retain];
if ((((((_nbs_hookClass_CopyAMethod() != 0x0) && (_nbs_hookClass_CopyAMethod() != 0x0)) && (_nbs_hookClass_CopyAMethod() != 0x0)) && (_nbs_hookClass_CopyAMethod() != 0x0)) && (_nbs_hookClass_CopyAMethod() != 0x0)) && (_nbs_hookClass_CopyAMethod() != 0x0)) {
if (_nbs_hookClass_CopyAMethod() != 0x0) {
if (_nbs_hookClass_CopyAMethod() != 0x0) {
if (_nbs_hookClass_CopyAMethod() != 0x0) {
if (_nbs_hookClass_CopyAMethod() != 0x0) {
_nbs_Swizzle(r14, @selector(dataTaskWithRequest:completionHandler:), @selector(nbs_dataTaskWithRequest:completionHandler:));
_nbs_Swizzle(r14, @selector(downloadTaskWithRequest:completionHandler:), @selector(nbs_downloadTaskWithRequest:completionHandler:));
_nbs_Swizzle(r14, @selector(downloadTaskWithResumeData:completionHandler:), @selector(nbs_downloadTaskWithResumeData:completionHandler:));
_nbs_Swizzle(r14, @selector(uploadTaskWithRequest:fromData:completionHandler:), @selector(nbs_uploadTaskWithRequest:fromData:completionHandler:));
_nbs_Swizzle(r14, @selector(uploadTaskWithRequest:fromFile:completionHandler:), @selector(nbs_uploadTaskWithRequest:fromFile:completionHandler:));
_nbs_Swizzle(r14, @selector(downloadTaskWithRequest:), @selector(nbs_downloadTaskWithRequest:));
_nbs_Swizzle(r14, @selector(uploadTaskWithRequest:fromFile:), @selector(nbs_uploadTaskWithRequest:fromFile:));
_nbs_Swizzle(r14, @selector(uploadTaskWithRequest:fromData:), @selector(nbs_uploadTaskWithRequest:fromData:));
_nbs_Swizzle(r12, @selector(sessionWithConfiguration:delegate:delegateQueue:), @selector(nbs_sessionWithConfiguration:delegate:delegateQueue:));
_nbs_Swizzle(r14, @selector(uploadTaskWithStreamedRequest:), @selector(nbs_uploadTaskWithStreamedRequest:));
}
}
}
}
}
[r12 release];
[r15 release];
[r14 release];
rdi = r13;
rax = [rdi release];
return rax;
}
_nbs_swizzle es la función C que escucha a la nube para implementar métodos vertiginosos.
Desde el código, podemos ver que además de usar _nbs_Swizzle para NSURLSessionDataTask , NSURLSessionUploadTask y NSURLSessionDownloadTask Task mencionadas anteriormente, también reemplaza la implementación de sessionWithConfiguration:delegate:delegateQueue: método. Explicaré por qué este método está enganchado más tarde.
Todas las implementaciones del método de gancho se definen en la clase _priv_NSURLSession_NBS .
El código central de nbs_dataTaskWithRequest:completionHandler: es el siguiente:
typedef void (^nbs_URLSessionDataTaskCompletionHandler)(NSData * _Nullable data, NSURLResponse * _Nullable response, NSError * _Nullable error);
- (NSURLSessionDataTask *)nbs_dataTaskWithRequest:(NSURLRequest *)request
completionHandler:(void (^)(NSData * _Nullable data, NSURLResponse * _Nullable response, NSError * _Nullable error))completionHandler {
_priv_NBSHTTPTransaction *httpTransaction = [_priv_NBSHTTPTransaction new];
nbs_URLSessionDataTaskCompletionHandler wrappedCompletionHandler;
__block NSURLSessionDataTask *dataTask;
if (completionHandler) {
wrappedCompletionHandler = ^(NSData * _Nullable data, NSURLResponse * _Nullable response, NSError * _Nullable error) {
NSTimeInterval timeInterval = [[NSDate date] timeIntervalSince1970];
[dataTask.httpTransaction finishAt:timeInterval];
completionHandler(data, response, error);
};
}
dataTask = [self nbs_dataTaskWithRequest:request
completionHandler:wrappedCompletionHandler];
if (dataTask) {
dataTask.httpTransaction = httpTransaction;
}
return dataTask;
}
_priv_NBSHTTPTransaction es un modelo de parámetros de rendimiento relacionados con las solicitudes HTTP en el SDK. Esta estructura de clase es la siguiente:
@class _priv_NBSHTTPTransaction : NSObject {
@property isFileURL
@property tm_dur_dns
@property tm_dur_cnnct
@property tm_pnt_send
@property tm_dur_firstP
@property tm_dur_end
@property tm_dur_ssl
@property sendSize
@property receiveSize
@property headerSize
@property dataSize
@property statusCode
@property errCode
@property contentLength
@property errText
@property url
@property ip
@property contentType
@property anyObj
@property useContentLength
@property netType
@property appData
@property request
@property response
@property responseData
@property urlParams
@property dataBody
@property httpMethodNumber
@property libClassId
@property socketItem
@property threadId
@property cdn_associate
@property connectType
@property cdnVendorName
@property cdn_flg
ivar tm_dur_cnnct
ivar tm_dur_dns
ivar tm_dur_firstP
ivar tm_dur_end
ivar tm_dur_ssl
ivar tm_pnt_send
ivar sendSize
ivar receiveSize
ivar headerSize
ivar dataSize
ivar statusCode
ivar errCode
ivar errText
ivar url
ivar ip
ivar contentType
ivar contentLength
ivar anyObj
ivar useContentLength
ivar netType
ivar appData
ivar response
ivar responseData
ivar urlParams
ivar dataBody
ivar httpMethodNumber
ivar libClassId
ivar socketItem
ivar threadId
ivar cdn_associate
ivar cdn_flg
ivar isFileURL
ivar connectType
ivar cdnVendorName
ivar _request
-clear
-init
-getText
-addIntoArray:
-startWithIP:DNSTime:atTimePoint:withObject:
-updateWithResponse:timePoint:
-updateWithReceiveData:
-updateWithTotalReceiveData:
-updateWithTotalReceiveSize:
-updateSendSize:
-updateWithError:
-finishAt:
-.cxx_destruct
-tm_dur_dns
-setTm_dur_dns:
-tm_pnt_send
-setTm_pnt_send:
-tm_dur_firstP
-setTm_dur_firstP:
-tm_dur_end
-setTm_dur_end:
-tm_dur_cnnct
-setTm_dur_cnnct:
-tm_dur_ssl
-setTm_dur_ssl:
-sendSize
-setSendSize:
-receiveSize
-setReceiveSize:
-errCode
-setErrCode:
-contentLength
-setContentLength:
-statusCode
-setStatusCode:
-headerSize
-setHeaderSize:
-dataSize
-setDataSize:
-url
-setUrl:
-ip
-setIp:
-errText
-setErrText:
-contentType
-setContentType:
-useContentLength
-setUseContentLength:
-netType
-setNetType:
-appData
-setAppData:
-response
-setResponse:
-responseData
-setResponseData:
-anyObj
-setAnyObj:
-urlParams
-setUrlParams:
-dataBody
-setDataBody:
-httpMethodNumber
-setHttpMethodNumber:
-libClassId
-setLibClassId:
-isFileURL
-setIsFileURL:
-socketItem
-setSocketItem:
-threadId
-setThreadId:
-connectType
-setConnectType:
-cdnVendorName
-setCdnVendorName:
-cdn_associate
-setCdn_associate:
-cdn_flg
-setCdn_flg:
-request
-setRequest:
}
La siguiente tabla enumera los significados de algunos atributos clave:
| propiedad | significado |
|---|---|
| tm_pnt_send | Hora de inicio de solicitud |
| tm_dur_dns | Tiempo de resolución de DNS |
| tm_dur_cnnct | Tiempo de establecimiento de conexión TCP |
| tm_dur_firstp | Primera hora de paquete |
| tm_dur_ssl | Tiempo de apretón de manos SSL |
| código de estado | Código de estado HTTP |
El tiempo de respuesta es un buen indicador cuantitativo, que se puede utilizar para medir el tiempo de espera para que los usuarios soliciten servicios. Generalmente se define como el período en que el usuario envía una solicitud y el contenido de respuesta en el servidor llega al cliente.
La siguiente figura es una explicación detallada de las solicitudes HTTP

De la figura anterior, podemos observar que el tiempo de respuesta incluye el tiempo de resolución del nombre de dominio DNS, el tiempo de conexión establecido con el servidor, el tiempo de procesamiento del servidor y el momento en que llega la respuesta al cliente.
Si usa Charles para interceptar solicitudes HTTP, puede ver los datos de tiempo de respuesta en la columna de tiempo de la pestaña Descripción general. Duration en la figura a continuación representa el tiempo de respuesta total de la solicitud, que también incluye DNS (Tiempo de resolución de nombre de dominio DNS), Connect (tiempo de establecimiento de conexión) y SSL Handshake (SSL Handshake Time) mencionados anteriormente. Debido a que esta solicitud es una solicitud HTTP, el campo SSL Handshake se deja en blanco.

De hecho, después de desarrollar la característica del tiempo de respuesta en el SDK, también podemos verificar la corrección de los resultados de esta manera. Por supuesto, el tiempo obtenido en el SDK no es exactamente igual a Charles, porque los dos métodos de implementación son completamente diferentes, pero la diferencia entre ellos debe estar dentro de un rango razonable. Este aspecto se discutirá en detalle a continuación.
A través de la introducción anterior, podemos pensar fácilmente en una idea: a través de la función, cuando se emite la solicitud de gancho, registre el tiempo de solicitud, luego enganche la respuesta de devolución de llamada en el SDK iOS, registre el tiempo de finalización y calcule la diferencia para obtener el tiempo de respuesta de esta solicitud. Lo mismo es cierto para la idea general de Tingyun, pero hay muchos detalles a los que deben prestarse atención. Discutamos su plan de implementación específico en detalle a continuación.
Listen Cloud es el método de resume de NSURLSIONSIONTASK en la función _nbs_hook_NSURLSessionTask para lograr el propósito de grabar el inicio de la solicitud.
void _nbs_hook_NSURLSessionTask() {
r14 = _objc_msgSend;
rax = [NSURLSessionConfiguration ephemeralSessionConfiguration];
rax = [rax retain];
var_40 = rax;
rax = [NSURLSession sessionWithConfiguration:rax];
rax = [rax retain];
rdx = 0x0;
var_38 = rax;
rax = [rax dataTaskWithURL:rdx];
rax = [rax retain];
var_30 = rax;
rbx = [rax class];
r12 = @selector(resume);
if (class_getInstanceMethod(rbx, r12) != 0x0) {
r15 = @selector(superclass);
r13 = @selector(resume);
var_48 = r15;
do {
if (_nbs_slow_isClassItSelfHasMethod(rbx, r12) != 0x0) {
r15 = class_getInstanceMethod(rbx, r12);
rax = method_getImplementation(r15);
rax = objc_retainBlock(__NSConcreteStackBlock);
var_50 = imp_implementationWithBlock(rax);
r13 = r13;
[rax release];
rdi = r15;
r15 = var_48;
rax = method_getTypeEncoding(rdi);
rdx = var_50;
rcx = rax;
class_replaceMethod(rbx, r12, rdx, rcx);
}
r14 = _objc_msgSend;
rbx = _objc_msgSend(rbx, r15, rdx, rcx);
rax = class_getInstanceMethod(rbx, r13);
r12 = r13;
} while (rax != 0x0);
}
(r14)(var_30, @selector(cancel), rdx);
(r14)(var_38, @selector(finishTasksAndInvalidate), rdx);
[var_30 release];
[var_38 release];
[var_40 release];
return;
}
Restaurar el pseudocódigo anterior al código Objective-C de la siguiente manera:
void _nbs_hook_NSURLSessionTask() {
NSURLSessionConfiguration *config = [NSURLSessionConfiguration ephemeralSessionConfiguration];
NSURLSession *session = [NSURLSession sessionWithConfiguration:config];
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wnonnull"
NSURLSessionDataTask *task = [session dataTaskWithURL:nil];
#pragma clang diagnostic pop
Class cls = task.class;
if (class_getInstanceMethod(cls, @selector(resume))) {
Method method;
do {
if (_nbs_slow_isClassItSelfHasMethod(cls, @selector(resume))) {
Method resumeMethod = class_getInstanceMethod(cls, @selector(resume));
IMP imp = imp_implementationWithBlock(^(id self) {
});
class_replaceMethod(cls, @selector(resume), imp, method_getTypeEncoding(resumeMethod));
}
cls = [cls superclass];
method = class_getInstanceMethod(cls, @selector(resume));
} while (method);
}
[task cancel];
[session finishTasksAndInvalidate];
}
Sabemos que en el marco Foundation , algunas clases son en realidad grupos de clases, como NSDictionary y NSArray . NSURLSessionTask también es una familia de clases, y las cadenas de herencia son diferentes en diferentes versiones del sistema, por lo que obviamente no puede enganchar directamente la clase NSURLSessionTask . Aquí se adopta un método inteligente para construir una sesión efímera a través del método ephemeralSessionConfiguration . Es similar a la sesión predeterminada, pero no se almacenan datos en el disco, y todos los cachés, cookies, credenciales, etc. se guardan en RAM y se asocian con la sesión. De esta manera, se borrarán automáticamente cuando la sesión no sea válida. Luego, a través de esta breve sesión, se crea un objeto de sesión, y el objeto de tarea finalmente se crea, y la clase real se obtiene a través de este objeto de tarea.
El enfoque inteligente anterior no es creado originalmente por Tingyun. En realidad se refiere al enfoque de AfNetworking. Para agregar notificaciones en el trabajo de Afnet, resume y suspend de la Task de Hook NSURLSessionTask también se implementan en AFURLSessionManager .
if (NSClassFromString(@"NSURLSessionTask")) {
/**
iOS 7 and iOS 8 differ in NSURLSessionTask implementation, which makes the next bit of code a bit tricky.
Many Unit Tests have been built to validate as much of this behavior has possible.
Here is what we know:
- NSURLSessionTasks are implemented with class clusters, meaning the class you request from the API isn't actually the type of class you will get back.
- Simply referencing `[NSURLSessionTask class]` will not work. You need to ask an `NSURLSession` to actually create an object, and grab the class from there.
- On iOS 7, `localDataTask` is a `__NSCFLocalDataTask`, which inherits from `__NSCFLocalSessionTask`, which inherits from `__NSCFURLSessionTask`.
- On iOS 8, `localDataTask` is a `__NSCFLocalDataTask`, which inherits from `__NSCFLocalSessionTask`, which inherits from `NSURLSessionTask`.
- On iOS 7, `__NSCFLocalSessionTask` and `__NSCFURLSessionTask` are the only two classes that have their own implementations of `resume` and `suspend`, and `__NSCFLocalSessionTask` DOES NOT CALL SUPER. This means both classes need to be swizzled.
- On iOS 8, `NSURLSessionTask` is the only class that implements `resume` and `suspend`. This means this is the only class that needs to be swizzled.
- Because `NSURLSessionTask` is not involved in the class hierarchy for every version of iOS, its easier to add the swizzled methods to a dummy class and manage them there.
Some Assumptions:
- No implementations of `resume` or `suspend` call super. If this were to change in a future version of iOS, we'd need to handle it.
- No background task classes override `resume` or `suspend`
The current solution:
1) Grab an instance of `__NSCFLocalDataTask` by asking an instance of `NSURLSession` for a data task.
2) Grab a pointer to the original implementation of `af_resume`
3) Check to see if the current class has an implementation of resume. If so, continue to step 4.
4) Grab the super class of the current class.
5) Grab a pointer for the current class to the current implementation of `resume`.
6) Grab a pointer for the super class to the current implementation of `resume`.
7) If the current class implementation of `resume` is not equal to the super class implementation of `resume` AND the current implementation of `resume` is not equal to the original implementation of `af_resume`, THEN swizzle the methods
8) Set the current class to the super class, and repeat steps 3-8
*/
NSURLSessionConfiguration *configuration = [NSURLSessionConfiguration ephemeralSessionConfiguration];
NSURLSession * session = [NSURLSession sessionWithConfiguration:configuration];
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wnonnull"
NSURLSessionDataTask *localDataTask = [session dataTaskWithURL:nil];
#pragma clang diagnostic pop
IMP originalAFResumeIMP = method_getImplementation(class_getInstanceMethod([self class], @selector(af_resume)));
Class currentClass = [localDataTask class];
while (class_getInstanceMethod(currentClass, @selector(resume))) {
Class superClass = [currentClass superclass];
IMP classResumeIMP = method_getImplementation(class_getInstanceMethod(currentClass, @selector(resume)));
IMP superclassResumeIMP = method_getImplementation(class_getInstanceMethod(superClass, @selector(resume)));
if (classResumeIMP != superclassResumeIMP &&
originalAFResumeIMP != classResumeIMP) {
[self swizzleResumeAndSuspendMethodForClass:currentClass];
}
currentClass = [currentClass superclass];
}
[localDataTask cancel];
[session finishTasksAndInvalidate];
}
class_copyMethodListse llamará en el método_nbs_slow_isClassItSelfHasMethodpara obtener la lista de métodos de esta clase. Tenga en cuenta que la lista de métodos obtenida por este método no contiene los métodos de la clase principal, por lo que_nbs_slow_isClassItSelfHasMethodes en realidad juzgar si la claseclsmisma contiene@selector(resume).
De hecho, la lógica anterior también se implementa en la biblioteca de código abierto Flex, pero existen ligeras diferencias en la implementación. Flex lo distinguirá del gancho __NSCFLocalSessionTask , NsurlsessionTask y __nscfurlsessionTask de acuerdo con la versión del sistema. Personalmente, siento que la implementación de Listen Cloud es más elegante que la codificación dura de Flex . Porque __NSCFLocalSessionTask y __NSCFURLSessionTask son clases privadas, se adoptan divididos y empalme para evitar el rechazo de auditoría.
+ (void)injectIntoNSURLSessionTaskResume
{
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
// In iOS 7 resume lives in __NSCFLocalSessionTask
// In iOS 8 resume lives in NSURLSessionTask
// In iOS 9 resume lives in __NSCFURLSessionTask
Class class = Nil;
if (![[NSProcessInfo processInfo] respondsToSelector:@selector(operatingSystemVersion)]) {
class = NSClassFromString([@[@"__", @"NSC", @"FLocalS", @"ession", @"Task"] componentsJoinedByString:@""]);
} else if ([[NSProcessInfo processInfo] operatingSystemVersion].majorVersion < 9) {
class = [NSURLSessionTask class];
} else {
class = NSClassFromString([@[@"__", @"NSC", @"FURLS", @"ession", @"Task"] componentsJoinedByString:@""]);
}
SEL selector = @selector(resume);
SEL swizzledSelector = [FLEXUtility swizzledSelectorForSelector:selector];
Method originalResume = class_getInstanceMethod(class, selector);
void (^swizzleBlock)(NSURLSessionTask *) = ^(NSURLSessionTask *slf) {
[[FLEXNetworkObserver sharedObserver] URLSessionTaskWillResume:slf];
((void(*)(id, SEL))objc_msgSend)(slf, swizzledSelector);
};
IMP implementation = imp_implementationWithBlock(swizzleBlock);
class_addMethod(class, swizzledSelector, implementation, method_getTypeEncoding(originalResume));
Method newResume = class_getInstanceMethod(class, swizzledSelector);
method_exchangeImplementations(originalResume, newResume);
});
}
La implementación de reemplazar el resume original anterior se implementa a través de imp_implementationWithBlock , y el bloque reemplazado es el siguiente:
void ___nbs_hook_NSURLSessionTask_block_invoke(int arg0, int arg1, int arg2) {
rbx = [[NSDate date] retain];
[rbx timeIntervalSince1970];
var_40 = intrinsic_movsd(var_40, xmm0);
[rbx release];
r15 = _is_tiaoshi_kai;
COND = *(int8_t *)r15 == 0x0;
var_50 = r13;
if (!COND) {
rax = [var_30 URL];
rax = [rax retain];
r14 = r15;
r15 = rax;
rbx = [[r15 absoluteString] retain];
rdx = rbx;
__NBSDebugLog(0x3, @"NSURLSession:start:url:%@", rdx, rcx, r8, r9, stack[2048]);
[rbx release];
rdi = r15;
r15 = r14;
[rdi release];
}
rbx = [objc_getAssociatedObject(r12, @"m_SessAssociatedKey") retain];
if (rbx != 0x0) {
xmm1 = intrinsic_movsd(xmm1, var_40);
xmm1 = intrinsic_mulsd(xmm1, *0x1000b9990);
xmm0 = intrinsic_movsd(xmm0, *0x1000b9da8);
[rbx startWithIP:0x0 DNSTime:var_30 atTimePoint:r8 withObject:r9];
[rbx setRequest:var_30];
[rbx setLibClassId:0x1];
}
else {
if (*(int8_t *)r15 != 0x0) {
__NBSDebugLog(0x3, cfstring_r, rdx, rcx, r8, r9, stack[2048]);
}
}
}
En el pseudo-código anterior, se ignora la lógica irrelevante en ___nbs_hook_NSURLSessionTask_block_invoke . Puede ver que se genera una marca de tiempo y la marca de tiempo se usa como un parámetro de entrada del método [rbx startWithIP:0x0 DNSTime:var_30 atTimePoint:r8 withObject:r9] . rbx es una instancia de _priv_NBSHTTPTransaction , y esta instancia se obtiene a través del objeto asociado de NSURLSessionDataTask . La lógica de crear _priv_NBSHTTPTransaction y configurar el objeto asociado está en el método -[_priv_NSURLSession_NBS nbs_dataTaskWithRequest:completionHandler:] .
r12 = [[var_30 nbs_dataTaskWithRequest:r13 completionHandler:0x0] retain];
r15 = [_priv_NBSHTTPTransaction new];
if (r12 != 0x0) {
objc_setAssociatedObject(r12, @"m_SessAssociatedKey", r15, 0x301);
}
[r15 release];
-[_priv_NBSHTTPTransaction startWithIP:DNSTime:atTimePoint:withObject:] El método asignará la hora del parámetro a su propiedad tm_pnt_send .
-[_priv_NBSHTTPTransaction startWithIP:DNSTime:atTimePoint:withObject:] {
var_30 = intrinsic_movsd(var_30, arg4, rdx, arg5);
r12->tm_pnt_send = intrinsic_movsd(r12->tm_pnt_send, intrinsic_movsd(xmm0, var_30));
}
Por supuesto, además del -[_priv_NSURLSession_NBS nbs_dataTaskWithRequest:completionHandler:] método, el siguiente método también contiene esta lógica:
nbs_downloadTaskWithRequest:nbs_downloadTaskWithRequest:completionHandler:nbs_downloadTaskWithResumeData:completionHandler:nbs_uploadTaskWithRequest:fromData:completionHandler:nbs_uploadTaskWithRequest:fromFile:completionHandler:nbs_uploadTaskWithRequest:fromFile:nbs_uploadTaskWithRequest:fromData:nbs_uploadTaskWithStreamedRequest: El tiempo de respuesta final se calcula en el método finishAt y lo asigna al atributo tm_dur_end .
void -[_priv_NBSHTTPTransaction finishAt:](void * self, void * _cmd, double arg2) {
r14 = self;
rbx = [r14 retain];
r14 = @selector(tm_pnt_send);
_objc_msgSend(rbx, r14);
xmm1 = intrinsic_xorpd(xmm1, xmm1);
xmm0 = intrinsic_ucomisd(xmm0, xmm1);
COND = xmm0 <= 0x0;
if (!COND) {
_objc_msgSend(rbx, r14);
xmm1 = intrinsic_movsd(xmm1, var_30);
xmm1 = intrinsic_subsd(xmm1, xmm0);
xmm0 = intrinsic_movapd(xmm0, xmm1);
[rbx setTm_dur_end:rdx];
}
}
Para las solicitudes de red iniciadas llamando dataTaskWithRequest:completionHandler: Método, la devolución de llamada completa está en completionHandler , por lo que se debe llamar finishAt en la devolución de llamada completa. Métodos similares incluyen ___72-[_priv_NSURLSession_NBS nbs_downloadTaskWithRequest:completionHandler:]_block_invoke , ___79-[_priv_NSURLSession_NBS nbs_uploadTaskWithRequest:fromData:completionHandler:]_block_invoke y otros métodos.
int ___68-[_priv_NSURLSession_NBS nbs_dataTaskWithRequest:completionHandler:]_block_invoke(int arg0, int arg1, int arg2, int arg3) {
rdi = *(r12 + 0x20);
xmm0 = intrinsic_movsd(xmm0, var_68);
[rdi finishAt:rdx];
}
Sin embargo, para las solicitudes de red que llaman dataTaskWithRequest: Método, debe enganchar URLSession:task:didCompleteWithError: Método de NSURLSessionTaskDelegate .
void -[_priv_NBSLensAllMethodsDlgt_urlSess nbs_URLSession:task:didCompleteWithError:](void * self, void * _cmd, void * arg2, void * arg3, void * arg4) {
rbx = [[NSDate date] retain];
[rbx timeIntervalSince1970];
xmm0 = intrinsic_mulsd(xmm0, *0x1000b9990);
var_40 = intrinsic_movsd(var_40, xmm0);
[rbx release];
rax = objc_getAssociatedObject(r13, @"m_SessAssociatedKey");
rax = [rax retain];
_objc_msgSend(r12, @selector(finishAt:), var_58);
}