RAG Architecture
1.0.0
This project is a Streamlit application for processing multimodal documents and querying a Milvus database. It leverages cutting-edge tools like LangChain, transformers, EasyOCR, and others for processing, storing, and querying text extracted from various file types.
audio, video, image, text, csv, yaml, json, docx, and pdf.speech_recognition and pydub.EasyOCR.HuggingFaceEmbeddings for generating vector representations.pip or conda package managerFork the repository: Navigate to RAG-Architecture GitHub Repository and click Fork.
Clone the forked repository:
git clone https://github.com/<your-username>/RAG-Architecture.git
cd RAG-Architecture
pip install -r requirements.txtRun the Streamlit app:
streamlit run app.py## ? **File Structure**
```bash
project/
│
├── app.py # Main Streamlit application
├── requirements.txt # ? Python dependencies
├── utils/ # Utility modules
│ ├── audio_utils.py # ? Audio file processing
│ ├── video_utils.py # ? Video file processing
│ ├── image_utils.py # ?️ Image file processing
│ ├── document_loaders.py # Document processing loaders
│ ├── milvus_client.py # ?️ Initializes Milvus database
│
├── milvus_database.db # ?️ Milvus database file (auto-created)
├── Dataset # Folder to store datasets
├── Images # ? Folder for storing images
? Key Modules
app.py? Main application logic
utils/Example Workflow
example.pdf).
? Future Improvements
License This project is licensed under the MIT License.
? Acknowledgments