中文交流群
Ich erstelle ein Redis-Modul namens Redis-Llm, das LLMs (Großsprachenmodelle) in Redis integriert. Sie können Redis-plus-plus lernen, indem Sie Fragen stellen.
Dies ist eine C ++ - Client -Bibliothek für Redis. Es basiert auf Hiredis und ist mit C ++ 17, C ++ 14 und C ++ 11 kompatibel.
Hinweis : Ich bin kein Muttersprachler. Wenn die Dokumentation unklar ist, können Sie bitte ein Problem eröffnen oder eine Anfrage anziehen. Ich werde so schnell wie möglich antworten.
Der Master -Zweig ist der stabile Zweig, der alle Tests besteht. Der Entwicklerzweig ist instabil. Wenn Sie einen Beitrag leisten möchten, erstellen Sie bitte Pull -Anfrage in Dev Branch.
Da Redis-Plus-Plus auf Hiredis basiert, sollten Sie Hiredis zuerst installieren. Die minimale Versionsanforderung für Hiredis ist V0.12.1 . Die neueste stabile Veröffentlichung von Hiredis wird jedoch immer empfohlen.
Hinweis : Sie müssen sicherstellen, dass nur 1 Version von Hiredis installiert ist. Andernfalls können Sie einige kabelgebundene Probleme bekommen. Überprüfen Sie die folgenden Probleme zum Beispiel: Ausgabe 135, Ausgabe 140 und Ausgabe 158.
Normalerweise können Sie HiredIS mit einem C ++-Paketmanager installieren, und dies ist der einfachste Weg, dies zu tun, z sudo apt-get install libhiredis-dev Wenn Sie jedoch den neuesten Code von Hiredis oder eine bestimmte Version (z. B. Async -Support -Anforderungen Hiredis v1.0.0 oder höher) installieren möchten, können Sie ihn aus der Quelle installieren.
Hinweis erneut: Installieren Sie nicht mehrere Versionen von Hiredis.
git clone https://github.com/redis/hiredis.git
cd hiredis
make
make installStandardmäßig ist Hiredis bei /usr /lokal installiert. Wenn Sie HiredIS am nicht defekten Standort installieren möchten, geben Sie die folgenden Befehle an, um den Installationspfad anzugeben.
make PREFIX=/non/default/path
make PREFIX=/non/default/path installRedis-plus-plus wird mit CMake gebaut.
git clone https://github.com/sewenew/redis-plus-plus.git
cd redis-plus-plus
mkdir build
cd build
cmake ..
make
make install
cd .. Wenn HiredIS am nicht-defauten Standort installiert ist, sollten Sie CMAKE_PREFIX_PATH verwenden, um den Installationspfad von Hiredis anzugeben. Standardmäßig ist Redis-plus-plus bei /usr /lokal installiert. Sie können jedoch CMAKE_INSTALL_PREFIX verwenden, um Redis-plus-plus am nicht defekten Ort zu installieren.
cmake -DCMAKE_PREFIX_PATH=/path/to/hiredis -DCMAKE_INSTALL_PREFIX=/path/to/install/redis-plus-plus .. Seit Version 1.3.0 wird standardmäßig Redis-Plus-Plus mit dem Standard -std=c++17 Standard erstellt. Damit können wir die optionalen Funktionen STD :: STRING_VIEW und STD :: verwenden. Es kann jedoch auch mit dem Standard -std=c++11 oder -std=c++14 Standard erstellt werden, und in diesem Fall haben wir unsere eigene einfache Implementierung von std::string_view und std::optional . Um den C ++ -Standard explizit anzugeben, können Sie das folgende CMake -Flag verwenden: -DREDIS_PLUS_PLUS_CXX_STANDARD=11 .
cmake -DCMAKE_PREFIX_PATH=/path/to/hiredis -DCMAKE_INSTALL_PREFIX=/path/to/install/redis-plus-plus -DREDIS_PLUS_PLUS_CXX_STANDARD=11 ..Hinweis : Sie sollten Redis-Plus-Plus und Ihre Anwendung mit demselben Standard erstellen, z. B. wenn Sie Redis-Plus-Plus mit C ++ 17-Standard erstellen, müssen Sie auch Ihren Anwendungscode mit C ++ 17-Standard erstellen.
Beim Kompilieren von Redis-Plus-Plus wird auch ein Testprogramm zusammengestellt, das möglicherweise eine Weile dauern kann. Sie können jedoch den Bautest mit der folgenden CMAKE -Option deaktivieren: -DREDIS_PLUS_PLUS_BUILD_TEST=OFF .
cmake -DCMAKE_PREFIX_PATH=/path/to/hiredis -DCMAKE_INSTALL_PREFIX=/path/to/install/redis-plus-plus -DREDIS_PLUS_PLUS_BUILD_TEST=OFF .. Standardmäßig baut Redis-Plus-Plus sowohl eine statische Bibliothek als auch eine gemeinsame Bibliothek auf. Wenn Sie nur einen von ihnen erstellen möchten, können Sie den anderen mit -DREDIS_PLUS_PLUS_BUILD_STATIC=OFF oder -DREDIS_PLUS_PLUS_BUILD_SHARED=OFF deaktivieren.
redis-plus-plus erstellt eine statische Bibliothek mit -fPIC Option, dh standardmäßig positionierende Code. Sie können es jedoch mit -DREDIS_PLUS_PLUS_BUILD_STATIC_WITH_PIC=OFF deaktivieren.
Jetzt hat Hiredis Windows-Unterstützung und seit Visual Studio 2017 hat Visual Studio integrierte Unterstützung für CMake. Redis-plus-plus unterstützt jetzt auch die Windows-Plattform. Es wurde vollständig mit Visual Studio 2017 und später im Sieg 10 getestet. Ich bin mit der Visual Studio -Umgebung nicht vertraut, und das folgende Dokument ist möglicherweise nicht korrekt. Wenn Sie mit der Windows-Plattform vertraut sind, können Sie diesen Dokument zur Installation von Redis-Plus-Plus unter Windows aktualisieren.
Im Folgenden finden Sie einige Links zum Erstellen von CMake -Projekten mit Visual Studio 2017 oder höher. Wenn Sie damit nicht vertraut sind, sollten Sie diese Anweisungen zuerst besser lesen:
Hinweis : IMHO, Support for CMake Project von Visual Studio 2017 ist nicht sehr ausgereift, und ich empfehle Ihnen, Hiredis und *Redis-Plus-Plus mit Visual Studio 2019 zu erstellen.
Zunächst müssen Sie den neuesten Code von Hiredis in Master Branch erhalten. Ältere Version unterstützt möglicherweise keine Windows -Plattform. Hiredis 'cmakelists.txt verwendet add_compile_definitions -Methode, die nur von CMake 3.12 oder höher unterstützt wird. Die CMake -Version von Visual Studio 2017 ist jedoch älter. Wenn Sie also Visual Studio 2017 verwenden, müssen Sie die folgende Zeile in der Datei cmakelists.txt kommentieren:
#IF(WIN32)
# ADD_COMPILE_DEFINITIONS(_CRT_SECURE_NO_WARNINGS WIN32_LEAN_AND_MEAN)
#ENDIF()Sie können die Funktion "Open Ordner" verwenden, um das HiredIS -Projekt zu öffnen und es mit den oben genannten Anweisungen (Links) zu erstellen.
Da Redis-Plus-Plus von Hiredis abhängt, müssen wir die Installationspfade von Hiredis vor dem Bau angeben. Sie können die Funktion "Open Ordner" verwenden, um das Projekt zur Redis-plus-plus- Projekt zu öffnen. Sie müssen die Datei cMakesetting.json (automatisch von Visual Studio generiert) auf Hiredis_Header , Hiredis_Lib und test_hiredis_lib Variablen festlegen, um den Installationspfad der Hiredis -Header, der Installationspfad der dynamischen Bibliothek der Hiredis und des Installationspfads der statischen Bibliothek der Hired ISE zu angeben. Das Folgende ist ein Beispiel für die Datei cmakesetting.json :
{
"configurations" : [
{
"name" : " x64-Release " ,
"generator" : " Visual Studio 15 2017 Win64 " ,
"configurationType" : " Release " ,
"buildRoot" : " ${env.LOCALAPPDATA} \ CMakeBuild \ ${workspaceHash} \ build \ ${name} " ,
"cmakeCommandArgs" : " " ,
"buildCommandArgs" : " -m -v:minimal " ,
"variables" : [
{
"name" : " HIREDIS_HEADER " ,
"value" : " installation path of hiredis header files " ,
"type" : " PATH "
},
{
"name" : " HIREDIS_LIB " ,
"value" : " installation path of dynamic library of hiredis " ,
"type" : " FILEPATH "
},
{
"name" : " TEST_HIREDIS_LIB " ,
"value" : " installation path of static library of hiredis " ,
"type" : " FILEPATH "
}
]
}
]
} Dann können Sie die oben genannten Anweisungen (Links) erstellen. Wenn Sie im Debug -Modus mit Visual Studio 2017 aufbauen, können Sie beim Erstellen des Tests einen Fehler erhalten. In diesem Fall können Sie den Erstellungstest deaktivieren, indem Sie -DREDIS_PLUS_PLUS_BUILD_TEST=OFF einstellen oder im Freigabemodus erstellen.
NOTIZ :
REDIS_PLUS_PLUS_CXX_STANDARD CMAKE auf 11 einstellen.Wenn Sie das Projekt mit Visual Studio erstellen und Fragen dazu haben möchten, befolgen Sie bitte die folgenden Schritte. Das Folgende wird in der Visual Studio 2022 Community getestet.
# download two projects into this folder
mkdir redis ++
cd redis ++
# make sure you create a hiredis first to work as a library
mkdir hiredis - lib
cd hiredis - lib
mkdir lib
git clone https: // github.com / redis / hiredis.git
cd hiredis Bisher sollte es bei jedem Schritt in Ordnung sein. Öffnen Sie dann die Datei CMakeLists.txt . Ändern Sie die folgende Zeile und kommentieren Sie sie aus
...
# SET(CMAKE_DEBUG_POSTFIX d)
...Gehen Sie dann zurück zum Hiredis -Projektordner
mkdir build
cd build
# convert project into visual studio 2022, if necessary choose you version e.g 19 2019 etc.
cmake - G " Visual Studio 17 2022 " ..
. / hiredis.sln Stellen Sie hiredis als Startprojekt fest und klicken Sie im Debug -Modus auf Build Solution
Kopieren Sie nach dem erfolgreichen Erstellen alle Dateien unter Debug in hiredis-lib/lib -Ordner
Hier sollte die Arbeit für Hiredis fertig sein.
Gehen Sie dann zurück in den Ordner redis++ . Offenes Terminal hier
git clone https: // github.com / sewenew / redis - plus - plus.git
cd redis - plus - plus
mkdir build
cd build Jetzt sollten Sie immer OpenSSL auf Ihrem PC haben, ansonsten können Sie Schokolade verwenden, um ihn zu installieren. Für Visual Studio 2022 installieren Sie PThread separat mit vpckg , folgt diesem Link
Nach aller Vorbereitung. Wenn Sie alle Projekte konvertieren möchten, dann
cmake - DCMAKE_PREFIX_PATH = " $ ( ABSOLUTE_PATH ) hiredis-lib " - G " Visual Studio 17 2022 " ..
cd build
. / redis ++ .sln Stellen Sie redis++_static als Startprojekt ein und klicken Sie auf Build Solution
Bisher wurde er erfolgreich beendet!
Wenn Ihr Anwendungscode auf Windows -Plattform auch Windows.H enthalten muss. Sie müssen sicherstellen, dass SW/Redis ++/Redis ++ vor Windows.H enthalten ist. Überprüfen Sie dieses Problem für Details.
Die grundlegende Unterstützung für den Aufbau eines GNU/Debian -Pakets wird unter Verwendung von CMake geliefert. Das folgende Beispiel zeigt, wie Sie das Debian -Paket erstellen:
mkdir build ; cd build
cmake ..
cpack -G DEBDas Installationspräfix kann wie folgt geändert werden:
mkdir build ; cd build
cmake -DCMAKE_INSTALL_PREFIX=/usr ..
cpack -G DEBRedis-plus-plus wurde mit den folgenden Compilern vollständig getestet:
gcc version 4.8.5 20150623 (Red Hat 4.8.5-39) (GCC)
gcc version 5.5.0 20171010 (Ubuntu 5.5.0-12ubuntu1)
gcc version 6.5.0 20181026 (Ubuntu 6.5.0-2ubuntu1~18.04)
gcc version 7.4.0 (Ubuntu 7.4.0-1ubuntu1~18.04.1)
gcc version 8.3.0 (Ubuntu 8.3.0-6ubuntu1~18.04.1)
gcc version 9.2.1 20191008 (Ubuntu 9.2.1-9ubuntu2)
gcc version 10.2.1 20210110 (Debian 10.2.1-6)
clang version 3.9.1-19ubuntu1 (tags/RELEASE_391/rc2)
clang version 4.0.1-10 (tags/RELEASE_401/final)
clang version 5.0.1-4 (tags/RELEASE_501/final)
clang version 6.0.0-1ubuntu2 (tags/RELEASE_600/final)
clang version 7.0.0-3~ubuntu0.18.04.1 (tags/RELEASE_700/final)
clang version 8.0.1-3build1 (tags/RELEASE_801/final)
Apple clang version 11.0.0 (clang-1100.0.33.12)
Visual Studio 2017 (Win 10)
Visual Studio 2019 (Win 10) Wenn Sie Redis -Plus -Plus mit -DREDIS_PLUS_PLUS_BUILD_TEST=ON (das Standardverhalten, und Sie können das Erstellen von Tests mit -DREDIS_PLUS_PLUS_BUILD_TEST=OFF deaktivieren) erstellen, erhalten Sie ein Testprogramm in Build/Test Directory: Build/test_redis ++ .
Um die Tests durchzuführen, müssen Sie eine Redis -Instanz und einen Redis -Cluster einrichten. Da das Testprogramm den größten Teil der Redis -Befehle an den Server und den Cluster sendet, müssen Sie Redis der neuesten Version einrichten. Andernfalls könnten die Tests scheitern. Wenn Sie beispielsweise Redis 4.0 zum Testen einrichten, fällt das Testprogramm fehl, wenn es versucht, den Befehl ZPOPMAX (einen Befehl redis 5.0) an den Server zu senden. Wenn Sie die Tests mit anderen Redis-Versionen ausführen möchten, müssen Sie Befehle, die von Ihren Redis nicht unterstützt wurden, aus Testquelldateien in redis-plus-plus/test/src/sw/redis ++/ Verzeichnis ausgeben. Entschuldigung für die Unannehmlichkeiten, und ich werde dieses Problem beheben, damit das Testprogramm in Zukunft mit jeder Version von Redis funktioniert.
Hinweis : Die neueste Version von Redis ist nur eine Voraussetzung für das Ausführen der Tests. Tatsächlich können Sie Redis-plus-plus mit Redis jeder Version verwenden, dh Redis 2.0 und höher.
Führen Sie das Testprogramm niemals in der Produktionsumgebung aus, da die Schlüssel, die das Testprogramm liest oder schreibt, möglicherweise mit Ihrer Anwendung in Konflikt stehen.
Um Tests mit Redis- und Redis -Cluster auszuführen, können Sie das Testprogramm mit dem folgenden Befehl ausführen:
./build/test/test_redis++ -h host -p port -a auth -n cluster_node -c cluster_portWenn Sie nur Tests mit Redis ausführen möchten, müssen Sie nur Host- , Port- und Auth -Optionen angeben:
./build/test/test_redis++ -h host -p port -a authWenn Sie nur Tests mit Redis -Cluster ausführen möchten, geben Sie einfach die Optionen cluster_node , cluster_port und auth an:
./build/test/test_redis++ -a auth -n cluster_node -c cluster_portStandardmäßig testet das Testprogramm in der Umgebung mit Multi-Threads nicht mit Redis-plus-plus . Wenn Sie einen Multi -Threads -Test durchführen möchten, der möglicherweise eine lange Zeit kostet, können Sie die Option -m angeben:
./build/test/test_redis++ -h host -p port -a auth -n cluster_node -c cluster_port -mWenn alle Tests bestanden wurden, druckt das Testprogramm die folgende Nachricht:
Pass all testsAndernfalls druckt es die Fehlermeldung.
Redis-plus-plus läuft so schnell wie Hiredis , da es sich um eine Hiredis handelt. Sie können test_redis ++ im Benchmark -Modus ausführen, um die Leistung in Ihrer Umgebung zu überprüfen.
./build/test/test_redis++ -h host -p port -a auth -n cluster_node -c cluster_port -b -t thread_num -s connection_pool_size -r request_num -k key_len -v val_len10 standardmäßig.5 standardmäßig.100000 standardmäßig.10 standardmäßig.10 standardmäßig. Der Bechmark erzeugt 100 zufällige Binärschlüssel zum Testen, und die Größe dieser Schlüssel wird von Key_len angegeben. Wenn der Benchmark ausgeführt wird, wird mit diesen Schlüsseln gelesen/geschrieben. Führen Sie also das Testprogramm in Ihrer Produktionsumgebung also niemals aus, da es sonst Ihre Daten ungenau löschen kann.
Nach dem Kompilieren des Codes erhalten Sie sowohl die gemeinsame Bibliothek als auch die statische Bibliothek. Da Redis-Plus-Plus von Hiredis abhängt, müssen Sie beide Bibliotheken mit Ihrer Anwendung verknüpfen. Vergessen Sie auch nicht, den C ++ -Standard -std=c++17 , -std=c++14 oder -std=c++11 sowie die Option Thread -bezogenen Angaben zu geben.
Nehmen Sie GCC als Beispiel.
g++ -std=c++17 -o app app.cpp /path/to/libredis++.a /path/to/libhiredis.a -pthread Wenn HiredIS und Redis-Plus-Plus am nicht-defaugenden Standort installiert sind, sollten Sie die Option -I den Header-Pfad angeben.
g++ -std=c++17 -I/non-default/install/include/path -o app app.cpp /path/to/libredis++.a /path/to/libhiredis.a -pthreadg++ -std=c++17 -o app app.cpp -lredis++ -lhiredis -pthread Wenn HiredIS und Redis-Plus-Plus am nicht defekten Ort installiert sind, sollten Sie die Optionen -I und -L Optionen verwenden, um die Header- und Bibliothekswege anzugeben.
g++ -std=c++17 -I/non-default/install/include/path -L/non-default/install/lib/path -o app app.cpp -lredis++ -lhiredis -pthreadWenn Sie mit freigegebenen Bibliotheken verknüpfen und Ihre Anwendung ausführen, erhalten Sie möglicherweise die folgende Fehlermeldung:
error while loading shared libraries: xxx: cannot open shared object file: No such file or directory. Das liegt daran, dass der Linker die gemeinsam genutzten Bibliotheken nicht finden kann. Um das Problem zu lösen, können Sie den Pfad hinzufügen, in dem Sie HiredIS- und Redis-plus-plus -Bibliotheken installiert haben, zu einer Umgebungsvariablen für die Umgebungsvariable LD_LIBRARY_PATH . Zum Beispiel:
export LD_LIBRARY_PATH= $LD_LIBRARY_PATH :/usr/local/libWeitere Informationen zur Lösung des Problems finden Sie in dieser stackoverflow -Frage.
Wenn Sie CMAKE zum Erstellen Ihrer Anwendung verwenden, müssen Sie Hiredis- und Redis-Plus-Plus- Abhängigkeiten in Ihren CMakelists hinzufügen.
# <---------- set c++ standard ------------->
# NOTE: you must build redis-plus-plus and your application code with the same standard.
set (CMAKE_CXX_STANDARD 17)
set (CMAKE_CXX_STANDARD_REQUIRED ON )
# <------------ add hiredis dependency --------------->
find_path (HIREDIS_HEADER hiredis)
target_include_directories ( target PUBLIC ${HIREDIS_HEADER} )
find_library (HIREDIS_LIB hiredis)
target_link_libraries ( target ${HIREDIS_LIB} )
# <------------ add redis-plus-plus dependency -------------->
# NOTE: this should be *sw* NOT *redis++*
find_path (REDIS_PLUS_PLUS_HEADER sw)
target_include_directories ( target PUBLIC ${REDIS_PLUS_PLUS_HEADER} )
find_library (REDIS_PLUS_PLUS_LIB redis++)
target_link_libraries ( target ${REDIS_PLUS_PLUS_LIB} )In dieser Ausgabe finden Sie ein vollständiges Beispiel von cmakelists.txt .
Wenn Sie HiredIS und Redis-Plus-Plus am nicht-defauten Standort installiert haben, müssen Sie CMAKE mit der Option CMAKE_PREFIX_PATH ausführen, um den Installationspfad dieser beiden Bibliotheken anzugeben.
cmake -DCMAKE_PREFIX_PATH=/installation/path/to/the/two/libs ..
# include < sw/redis++/redis++.h >
using namespace sw ::redis ;
try {
// Create an Redis object, which is movable but NOT copyable.
auto redis = Redis ( " tcp://127.0.0.1:6379 " );
// ***** STRING commands *****
redis. set ( " key " , " val " );
auto val = redis. get ( " key " ); // val is of type OptionalString. See 'API Reference' section for details.
if (val) {
// Dereference val to get the returned value of std::string type.
std::cout << *val << std::endl;
} // else key doesn't exist.
// ***** LIST commands *****
// std::vector<std::string> to Redis LIST.
std::vector<std::string> vec = { " a " , " b " , " c " };
redis. rpush ( " list " , vec. begin (), vec. end ());
// std::initializer_list to Redis LIST.
redis. rpush ( " list " , { " a " , " b " , " c " });
// Redis LIST to std::vector<std::string>.
vec. clear ();
redis. lrange ( " list " , 0 , - 1 , std::back_inserter (vec));
// ***** HASH commands *****
redis. hset ( " hash " , " field " , " val " );
// Another way to do the same job.
redis. hset ( " hash " , std::make_pair ( " field " , " val " ));
// std::unordered_map<std::string, std::string> to Redis HASH.
std::unordered_map<std::string, std::string> m = {
{ " field1 " , " val1 " },
{ " field2 " , " val2 " }
};
redis. hmset ( " hash " , m. begin (), m. end ());
// Redis HASH to std::unordered_map<std::string, std::string>.
m. clear ();
redis. hgetall ( " hash " , std::inserter (m, m. begin ()));
// Get value only.
// NOTE: since field might NOT exist, so we need to parse it to OptionalString.
std::vector<OptionalString> vals;
redis. hmget ( " hash " , { " field1 " , " field2 " }, std::back_inserter (vals));
// ***** SET commands *****
redis. sadd ( " set " , " m1 " );
// std::unordered_set<std::string> to Redis SET.
std::unordered_set<std::string> set = { " m2 " , " m3 " };
redis. sadd ( " set " , set. begin (), set. end ());
// std::initializer_list to Redis SET.
redis. sadd ( " set " , { " m2 " , " m3 " });
// Redis SET to std::unordered_set<std::string>.
set. clear ();
redis. smembers ( " set " , std::inserter (set, set. begin ()));
if (redis. sismember ( " set " , " m1 " )) {
std::cout << " m1 exists " << std::endl;
} // else NOT exist.
// ***** SORTED SET commands *****
redis. zadd ( " sorted_set " , " m1 " , 1.3 );
// std::unordered_map<std::string, double> to Redis SORTED SET.
std::unordered_map<std::string, double > scores = {
{ " m2 " , 2.3 },
{ " m3 " , 4.5 }
};
redis. zadd ( " sorted_set " , scores. begin (), scores. end ());
// Redis SORTED SET to std::vector<std::pair<std::string, double>>.
// NOTE: The return results of zrangebyscore are ordered, if you save the results
// in to `std::unordered_map<std::string, double>`, you'll lose the order.
std::vector<std::pair<std::string, double >> zset_result;
redis. zrangebyscore ( " sorted_set " ,
UnboundedInterval< double >{}, // (-inf, +inf)
std::back_inserter (zset_result));
// Only get member names:
// pass an inserter of std::vector<std::string> type as output parameter.
std::vector<std::string> without_score;
redis. zrangebyscore ( " sorted_set " ,
BoundedInterval< double >( 1.5 , 3.4 , BoundType::CLOSED), // [1.5, 3.4]
std::back_inserter (without_score));
// Get both member names and scores:
// pass an back_inserter of std::vector<std::pair<std::string, double>> as output parameter.
std::vector<std::pair<std::string, double >> with_score;
redis. zrangebyscore ( " sorted_set " ,
BoundedInterval< double >( 1.5 , 3.4 , BoundType::LEFT_OPEN), // (1.5, 3.4]
std::back_inserter (with_score));
// ***** SCRIPTING commands *****
// Script returns a single element.
auto num = redis. eval < long long >( " return 1 " , {}, {});
// Script returns an array of elements.
std::vector<std::string> nums;
redis. eval ( " return {ARGV[1], ARGV[2]} " , {}, { " 1 " , " 2 " }, std::back_inserter (nums));
// mset with TTL
auto mset_with_ttl_script = R"(
local len = #KEYS
if (len == 0 or len + 1 ~= #ARGV) then return 0 end
local ttl = tonumber(ARGV[len + 1])
if (not ttl or ttl <= 0) then return 0 end
for i = 1, len do redis.call("SET", KEYS[i], ARGV[i], "EX", ttl) end
return 1
)" ;
// Set multiple key-value pairs with TTL of 60 seconds.
auto keys = { " key1 " , " key2 " , " key3 " };
std::vector<std::string> args = { " val1 " , " val2 " , " val3 " , " 60 " };
redis. eval < long long >(mset_with_ttl_script, keys. begin (), keys. end (), args. begin (), args. end ());
// ***** Pipeline *****
// Create a pipeline.
auto pipe = redis. pipeline ();
// Send mulitple commands and get all replies.
auto pipe_replies = pipe . set ( " key " , " value " )
. get ( " key " )
. rename ( " key " , " new-key " )
. rpush ( " list " , { " a " , " b " , " c " })
. lrange ( " list " , 0 , - 1 )
. exec ();
// Parse reply with reply type and index.
auto set_cmd_result = pipe_replies. get < bool >( 0 );
auto get_cmd_result = pipe_replies. get <OptionalString>( 1 );
// rename command result
pipe_replies. get < void >( 2 );
auto rpush_cmd_result = pipe_replies. get < long long >( 3 );
std::vector<std::string> lrange_cmd_result;
pipe_replies. get ( 4 , back_inserter (lrange_cmd_result));
// ***** Transaction *****
// Create a transaction.
auto tx = redis. transaction ();
// Run multiple commands in a transaction, and get all replies.
auto tx_replies = tx. incr ( " num0 " )
. incr ( " num1 " )
. mget ({ " num0 " , " num1 " })
. exec ();
// Parse reply with reply type and index.
auto incr_result0 = tx_replies. get < long long >( 0 );
auto incr_result1 = tx_replies. get < long long >( 1 );
std::vector<OptionalString> mget_cmd_result;
tx_replies. get ( 2 , back_inserter (mget_cmd_result));
// ***** Generic Command Interface *****
// There's no *Redis::client_getname* interface.
// But you can use *Redis::command* to get the client name.
val = redis. command <OptionalString>( " client " , " getname " );
if (val) {
std::cout << *val << std::endl;
}
// Same as above.
auto getname_cmd_str = { " client " , " getname " };
val = redis. command <OptionalString>(getname_cmd_str. begin (), getname_cmd_str. end ());
// There's no *Redis::sort* interface.
// But you can use *Redis::command* to send sort the list.
std::vector<std::string> sorted_list;
redis. command ( " sort " , " list " , " ALPHA " , std::back_inserter (sorted_list));
// Another *Redis::command* to do the same work.
auto sort_cmd_str = { " sort " , " list " , " ALPHA " };
redis. command (sort_cmd_str. begin (), sort_cmd_str. end (), std::back_inserter (sorted_list));
// ***** Redis Cluster *****
// Create a RedisCluster object, which is movable but NOT copyable.
auto redis_cluster = RedisCluster ( " tcp://127.0.0.1:7000 " );
// RedisCluster has similar interfaces as Redis.
redis_cluster. set ( " key " , " value " );
val = redis_cluster. get ( " key " );
if (val) {
std::cout << *val << std::endl;
} // else key doesn't exist.
// Keys with hash-tag.
redis_cluster. set ( " key{tag}1 " , " val1 " );
redis_cluster. set ( " key{tag}2 " , " val2 " );
redis_cluster. set ( " key{tag}3 " , " val3 " );
std::vector<OptionalString> hash_tag_res;
redis_cluster. mget ({ " key{tag}1 " , " key{tag}2 " , " key{tag}3 " },
std::back_inserter (hash_tag_res));
} catch ( const Error &e) {
// Error handling.
}Sie können auch REDIS.H für die Dokumentation im Doxygen -Stil sehen.
Redis -Klasse behält einen Verbindungspool zum REDIS -Server. Wenn die Verbindung unterbrochen ist, verbindet sich Redis neu mit dem REDIS -Server wieder an.
Sie können eine Redis -Instanz mit ConnectionOptions und ConnectionPoolOptions initialisieren. ConnectionOptions gibt Optionen für die Verbindung zum REDIS -Server an, und ConnectionPoolOptions gibt Optionen für Conneciton Pool an. ConnectionPoolOptions ist optional. Wenn nicht angegeben, verwaltet Redis eine einzige Verbindung zum Redis -Server.
ConnectionOptions connection_options;
connection_options.host = " 127.0.0.1 " ; // Required.
connection_options.port = 6666 ; // Optional. The default port is 6379.
connection_options.password = " auth " ; // Optional. No password by default.
connection_options.db = 1 ; // Optional. Use the 0th database by default.
// Optional. Timeout before we successfully send request to or receive response from redis.
// By default, the timeout is 0ms, i.e. never timeout and block until we send or receive successfuly.
// NOTE: if any command is timed out, we throw a TimeoutError exception.
connection_options.socket_timeout = std::chrono::milliseconds( 200 );
// Connect to Redis server with a single connection.
Redis redis1 (connection_options);
ConnectionPoolOptions pool_options;
pool_options.size = 3 ; // Pool size, i.e. max number of connections.
// Optional. Max time to wait for a connection. 0ms by default, which means wait forever.
// Say, the pool size is 3, while 4 threds try to fetch the connection, one of them will be blocked.
pool_options.wait_timeout = std::chrono::milliseconds( 100 );
// Optional. Max lifetime of a connection. 0ms by default, which means never expire the connection.
// If the connection has been created for a long time, i.e. more than `connection_lifetime`,
// it will be expired and reconnected.
pool_options.connection_lifetime = std::chrono::minutes( 10 );
// Connect to Redis server with a connection pool.
Redis redis2 (connection_options, pool_options); HINWEIS Redis::brpop Redis::bzpopmin Redis::blpop ConnectionOptions::socket_timeout ConnectionOptions::socket_timeout Redis::bzpopmax Andernfalls können Sie TimeoutError erhalten und Nachrichten verlieren.
Weitere Optionen finden Sie unter VerbindungOptionen und ConnectionPooloptions. Außerdem finden Sie Ausgabe 80 für die Diskussion über den Verbindungspool.
Hinweis : Redis -Klasse ist beweglich, aber nicht kopierbar.
// auto redis3 = redis1; // this won't compile.
// But it's movable.
auto redis3 = std::move(redis1);Redis-plus-plus unterstützt auch die Verbindung zum Redis-Server mit UNIX-Domänen-Socket.
ConnectionOptions options;
options.type = ConnectionType::UNIX;
options.path = " /path/to/socket " ;
Redis redis (options);Sie können auch mit einem URI eine Verbindung zum REDIS -Server herstellen:
tcp://[[username:]password@]host[:port][/db]
redis://[[username:]password@]host[:port][/db]
unix://[[username:]password@]path-to-unix-domain-socket[/db]
Das Programm und die Host -Teile sind erforderlich und andere sind optional. Wenn Sie eine Verbindung zu Redis mit UNIX Domain Socket herstellen, sollten Sie das UNIX -Schema verwenden. Andernfalls sollten Sie das TCP- oder Redis -Schema verwenden. Im Folgenden finden Sie eine Liste der Standardwerte für diese optionalen Teile:
Hinweis : Wenn Ihr Passwort oder Ihr Benutzername '@' oder Ihr Benutzername enthält: '', können Sie Redis -Objekt mit URI nicht konstruieren. Weil Redis-plus-plus den URI fälschlicherweise analysiert. In diesem Fall müssen Sie ConnectionOptions verwenden, um Redis -Objekt zu konstruieren.
Hinweis : Redis 6.0 unterstützt ACL und Sie können einen Benutzernamen für die Verbindung angeben. Vor Redis 6.0 können Sie das jedoch nicht tun.
Außerdem können die folgenden Verbindungsoptionen und Verbindungspooloptionen mit der Abfragezeichenfolge von URI angegeben werden, z .
| Option | Parameter | Standard |
|---|---|---|
ConnectionOptions::user | Benutzer | Standard |
ConnectionOptions::password | Passwort | leere Zeichenfolge, dh kein Passwort |
ConnectionOptions::db | db | 0 |
ConnectionOptions::keep_alive | keep_alive | FALSCH |
ConnectionOptions::connect_timeout | connect_timeout | 0 ms |
ConnectionOptions::socket_timeout | socket_timeout | 0 ms |
ConnectionOptions::resp | resp | 2 |
ConnectionPoolOptions::size | pool_size | 1 |
ConnectionPoolOptions::wait_timeout | pool_wait_timeout | 0 ms |
ConnectionPoolOptions::connection_lifetime | pOOL_CONNECTION_LIFETIME | 0 ms |
ConnectionPoolOptions::connection_idle_time | pool_connection_idle_time | 0 ms |
NOTIZ :
// Single connection to the given host and port.
Redis redis1 ( " tcp://127.0.0.1:6666 " );
// Use default port, i.e. 6379.
Redis redis2 ( " tcp://127.0.0.1 " );
// Connect to Redis with password, and default port.
Redis redis3 ( " tcp://[email protected] " );
// Connect to Redis and select the 2nd (db number starts from 0) database.
Redis redis4 ( " tcp://127.0.0.1:6379/2 " );
// Set keep_alive option to true with query string.
Redis redis5 ( " tcp://127.0.0.1:6379/2?keep_alive=true " );
// Set socket_timeout to 50 milliseconds, and connect_timeout to 1 second with query string.
Redis redis6 ( " tcp://127.0.0.1?socket_timeout=50ms&connect_timeout=1s " );
// Connect to Unix Domain Socket.
Redis redis7 ( " unix://path/to/socket " ); Seit Redis 6.0 unterstützt es eine neue Version des Redis -Protokolls, dh ReP3. Um dieses neue Protokoll zu verwenden, müssen Sie ConnectionOptions::resp zu 3.
ConnectionOptions opts;
opts.resp = 3;
// Set other options...
Standardmäßig sind ConnectionOptions::resp 2, dh resp Version 2. Bisher werden nur Version 2 und 3 unterstützt, und das Verhalten ist nicht definiert, wenn Sie ConnectionOptions::resp auf andere Zahlen festlegen.
Hinweis : Um dieses neue Protokoll zu verwenden, müssen Sie die neueste HiredIS installieren (sogar Hiredis-V1.0.2 verfügt über Fehler bei der Unterstützung von EMP3).
Verbindungen im Pool werden faul gestaltet. Wenn der Verbindungspool initialisiert wird, dh der Konstruktor von Redis , stellt Redis keine Verbindung zum Server her. Stattdessen stellt es nur dann eine Verbindung zum Server her, wenn Sie versuchen, den Befehl zu senden. Auf diese Weise können wir unnötige Verbindungen vermeiden. Wenn also die Poolgröße 5 beträgt, die Anzahl der gleichzeitigen Verbindungen von Max jedoch 3 beträgt, gibt es nur 3 Verbindungen im Pool.
Sie müssen nicht überprüfen, ob Redis -Objekt erfolgreich mit dem Server hergestellt wird. Wenn Redis keine Verbindung zum REDIS -Server erstellt oder die Verbindung zu einem bestimmten Zeitpunkt unterbrochen wird, wird eine Ausnahme des Typs vom Error vom Typ ausgelöst, wenn Sie versuchen, den Befehl mit Redis zu senden. Selbst wenn Sie eine Ausnahme erhalten, dh die Verbindung ist gebrochen, müssen Sie kein neues Redis -Objekt erstellen. Sie können das Redis -Objekt wiederverwenden, um Befehle zu senden, und das Redis -Objekt versucht, automatisch mit Server zu verbinden. Wenn es erfolgreich verbindet, wird der Befehl an Server gesendet. Ansonsten macht es erneut eine Ausnahme.
Weitere Informationen zu Ausnahmen finden Sie im Abschnitt Ausnahme.
Es ist nicht billig, ein Redis -Objekt zu erstellen, da es neue Verbindungen zum REDIS -Server erstellt. Sie sollten Redis -Objekt also besser wie möglich wiederverwenden. Es ist auch sicher, Redis -Mitgliederfunktionen in Multi-Thread-Umgebung aufzurufen, und Sie können Redis Objekt in mehreren Threads teilen.
// This is GOOD practice.
auto redis = Redis( " tcp://127.0.0.1 " );
for ( auto idx = 0 ; idx < 100 ; ++idx) {
// Reuse the Redis object in the loop.
redis. set ( " key " , " val " );
}
// This is VERY BAD! It's very inefficient.
// NEVER DO IT!!!
for ( auto idx = 0 ; idx < 100 ; ++idx) {
// Create a new Redis object for each iteration.
auto redis = Redis ( " tcp://127.0.0.1 " );
redis. set ( " key " , " val " );
}Redis-plus-plus hat auch TLS-Unterstützung. Um diese Funktion zu verwenden, müssen Sie diese beim Erstellen von Hiredis und Redis-Plus-Plus aktivieren.
Hinweis : Bisher wurde die TLS -Funktion auf der Windows -Plattform nicht getestet. Ich werde es in Zukunft beheben.
Beim Erstellen von HiredIS mit TLS -Unterstützung müssen Sie HiredIS von Version V1.0.0 oder letzterem herunterladen und USE_SSL=1 -Flag angeben:
make PREFIX=/non/default/path USE_SSL=1
make PREFIX=/non/default/path USE_SSL=1 install Anschließend können Sie Redis-Plus-Plus erstellen, um die Unterstützung von TLS zu aktivieren, indem Sie die -DREDIS_PLUS_PLUS_USE_TLS=ON angeben: Option:
cmake -DREDIS_PLUS_PLUS_USE_TLS=ON ..Um mit TLS -Unterstützung eine Verbindung zu Redis herzustellen, müssen Sie die folgenden Verbindungsoptionen angeben:
ConnectionOptions opts;
opts.host = " 127.0.0.1 " ;
opts.port = 6379 ;
opts.tls.enabled = true ; // Required. `false` by default.
opts.tls.cert = " /path/to/client/certificate " ; // Optional
opts.tls.key = " /path/to/private/key/file " ; // Optional
opts.tls.cacert = " /path/to/CA/certificate/file " ; // You can also set `opts.tls.cacertdir` instead.
opts.tls.sni = " server-name-indication " ; // Optional Obwohl tls.cert und tls.key optional sind, müssen Sie auch die andere angeben, wenn Sie eine davon angeben. Anstatt tls.cacert anzugeben, können Sie auch tls.cacertdir in dem Verzeichnis angeben, in dem Zertifikate gespeichert werden.
Diese Optionen entsprechen den TLS-verwandten Befehlszeilenargumenten von redis-cli , sodass Sie auch redis-cli --help ausführen können, um die detaillierte Erklärung dieser Optionen zu erhalten.
Anschließend können Sie diese ConnectionOptions verwenden, um ein Redis -Objekt zu erstellen, um eine Verbindung zum Redis -Server mit TLS -Unterstützung herzustellen.
Hinweis : -lssl Sie Ihren Anwendungscode -lcrypto , müssen Sie ihn auch mit libhiredis.a , libhiredis_ssl.a , libredis++.a
Standardmäßig initialisiert die OpenSSL-Bibliothek automatisch initialisiert, dh SSL_library_init und initialisiert bei Bedarf Sperrs. Ihr Anwendungscode initialisiert jedoch möglicherweise bereits die OpenSSL -Bibliothek. In diesem Fall können Sie tls::disable_auto_init() aufrufen, um die Initialisierung zu deaktivieren. Sie sollten diese Funktion nur einmal aufrufen und sie vor einem anderen Operation von Redis-Plus-Plus aufrufen. Ansonsten ist das Verhalten undefiniert.
Seit Hiredis v1.1.0 unterstützt es die Überprüfung der Zertifikatsübergabe. Wenn Sie diese Funktion mit Redis-Plus-Plus verwenden möchten, können Sie dieses Problem für ein Beispiel überprüfen.
Sie können Redis -Befehle über Redis -Objekt senden. Redis verfügt über eine oder mehrere (überladene) Methoden für jeden Redis -Befehl. Die Methode hat den gleichen (niedrigeren) Namen wie der entsprechende Befehl. Zum Beispiel haben wir 3 Überlastmethoden für den Befehl DEL key [key ...] :
// Delete a single key.
long long Redis::del ( const StringView &key);
// Delete a batch of keys: [first, last).
template < typename Input>
long long Redis::del (Input first, Input last);
// Delete keys in the initializer_list.
template < typename T>
long long Redis::del (std::initializer_list<T> il);Mit Eingabeparametern erstellen diese Methoden einen Redis -Befehl basierend auf Redis -Protokoll und senden den Befehl an REDIS -Server. Dann synchron die Antwort erhalten, analysieren und zum Anrufer zurückkehren.
Schauen wir uns die Parameter und Rückgabeträger dieser Methoden genauer an.
Die meisten dieser Methoden haben die gleichen Parameter wie die entsprechenden Befehle. Im Folgenden finden Sie eine Liste der Parametertypen:
| Parametertyp | Erklärung | Beispiel | Notiz |
|---|---|---|---|
| StringView | Parameter des String -Typs. Normalerweise werden für Schlüssel, Wert, Mitgliedsname, Feldname usw. verwendet | bool Redis :: hset (const StringView & Key, const StringView & Feld, const StringView & Val) | Weitere Informationen zu StringView finden Sie im Abschnitt StringView |
| lange lange | Parameter des Ganzzahltyps. Normalerweise werden für Index (z. B. Befehle) oder Ganzzahl verwendet | void ltrim (const StringView & Key, langer langer Start, langer langer Stopp) Long langes Dekretion (const StringView & Key, Long Long Decrement) | |
| doppelt | Parameter des Floating-Punkt-Typs. Normalerweise werden für die Bewertung (z. B. Sortierten-Set-Befehle) oder die Anzahl der Gleitkomma-Typen verwendet | Double Incylyfloat (const StringView & Key, Doppelinkrement) | |
| Std :: Chrono :: Dauer std :: chrono :: time_point | Zeitbezogene Parameter | bool läuft ab (const StringView & Key, const std :: chrono :: Sekunden & Timeout) BOOL Abirreat (const StringView & Key, const std :: chrono :: time_point <std :: chrono :: system_clock, std :: chrono :: Sekunden> & tp) | |
| std :: pair <stringView, stringView> | Wird für Redis Hashs (Feld, Wert) Paar verwendet | bool hset (const StringView & Key, const std :: pair <stringView, stringView> & itel) | |
| std :: pair <double, double> | Wird für Redis Geos (Längengrad, Breitengrad) verwendet | OptionAllonglong Georadius (const StringView & Key, const std :: pair <double, double> & loten, doppelte radius, Geounit -Einheit, const StringView & Destination, bool Store_dist, lange Zählung) | |
| Iteratorenpaar | Verwenden Sie ein Paar Iteratoren, um einen Eingangsbereich anzugeben, damit wir die Daten in einem STL -Container an diese Methoden übergeben können | Vorlage <Typename Eingabe> lange lange del (Eingabe zuerst, zuletzt Eingabe) | Wirf eine Ausnahme, wenn es sich um eine leere Reichweite handelt, dh zuerst == zuletzt |
| std :: initializer_list <t> | Verwenden Sie eine Initialisierungsliste, um eine Eingabestapel anzugeben | Vorlage <typername t> Long Long Del (std :: initializer_list <t> il) | |
| Einige Optionen | Optionen für einige Befehle | Updatetype , template <TypeName t> class BoundedInterval | Weitere Informationen finden Sie unter command_options.h |
STD :: STRING_VIEW ist eine gute Wahl für die Parametertypen für schreibgeschützte Zeichenfolge. std::string_view wurde jedoch nur im C ++ 17 -Standard eingeführt. Wenn Sie also Redis -Plus -Plus mit dem -std=c++11 (dh durch Angabe von -DREDIS_PLUS_PLUS_CXX_STANDARD=11 mit CMake -Befehl cmake) oder -std=c++14 Standard, a Simple Implementierung StringView std::string_view : Sie können Redis-plus-plus mit dem Standard -std=c++17 (dh das Standardverhalten) erstellen, das std::string_view nativ liefert. Die StringView -Implementierung wird dann nicht berücksichtigt, indem sie auf std::string_view aliasiniert wird. Dies erfolgt in der Redis-Plus-Plus- Bibliothek mit: using StringView = std::string_view .
Da es Conversions von std::string und C-Style-String in StringView gibt, können Sie einfach std::string oder C-Style-String an Methoden übergeben, die einen StringView Parameter benötigen.
// bool Redis::hset(const StringView &key, const StringView &field, const StringView &val)
// Pass c-style string to StringView.
redis.hset( " key " , " field " , " value " );
// Pass std::string to StringView.
std::string key = " key " ;
std::string field = " field " ;
std::string val = " val " ;
redis.hset(key, field, val);
// Mix std::string and c-style string.
redis.hset(key, field, " value " );Das Redis -Protokoll definiert 5 Arten von Antworten:
long long zu halten. Auch diese Antworten könnten null sein. Wenn Sie beispielsweise versuchen, den Wert einer nicht vorhandenen Taste zu GET , gibt Redis eine null Bulk -String -Antwort zurück.
Wie wir oben erwähnt haben, werden Antworten in die Rückgaberwerte dieser Methoden analysiert. Das Folgende ist eine Liste von Rückgabetypen:
| Rückgabetyp | Erklärung | Beispiel | Notiz |
|---|---|---|---|
| Leere | Statusantwort , die immer eine Zeichenfolge von "OK" zurückgeben sollte | Umbenennen , setex | |
| STD :: String | Status antworten , die nicht immer "OK" und Bulk String Antwort zurückgeben | Ping , Info | |
| bool | Ganzzahl Antwort , die immer 0 oder 1 zurückgibt | Verfallen , hset | Sehen Sie sich den Abschnitt "Boolean Return Value" für die Bedeutung eines Booleschen Rückgabewerts an |
| lange lange | Ganzzahl antworten , die nicht immer 0 oder 1 zurückgeben | Del , anhängen | |
| doppelt | Bulk -String -Antwort , die ein Doppel darstellt | Incrbyfloat , Zincrby | |
| std :: pair | Array -Antwort mit genau 2 Elementen. Da der Rückgabewert immer ein Array von 2 Elementen ist, geben wir die 2 Elemente als erste und zweite Elemente eines std::pair zurück | Blpop | |
| Std :: Tupel | Array -Antwort mit fester Länge und hat mehr als 2 Elemente. Da die Länge des zurückgegebenen Arrays festgelegt ist, geben wir das Array als std::tuple zurück | Bzpopmax | |
| Iterator ausgeben | Allgemeine Array-Antwort mit nicht fixierter/dynamischer Länge. Wir verwenden die STL-ähnliche Schnittstelle, um diese Art von Array-Antworten zurückzugeben, damit Sie den Rückgabewert problemlos in einen STL-Container einfügen können | Mget , lrange | Manchmal entscheidet auch die Art des Ausgangs -Iterators, welche Optionen mit dem Befehl gesendet werden sollen. Einzelheiten finden Sie im Abschnitt Beispiele |
| Optional <t> | Für jede Antwort vom Typ T , das null sein könnte | Get , Lpop , Blpop , Bzpopmax | Weitere Informationen zu Optional<T> finden Sie im optionalen Abschnitt |
| Variante <args ...> | Für die Antwort, die möglicherweise von Serval verschiedenen Typen sein könnte | Speicherstatistiken | Hinweis: Bisher wird dieser Typ nur beim Kompilieren von Redis-Plus-Plus mit C ++ 17 Standard unterstützt. Dies wird normalerweise mit generischer Befehlsschnittstelle verwendet. Weitere Informationen zu Variant<Args...> finden Sie im Abschnitt Variante |
| STL Container | Allgemeine Array -Antwort | Konfiguration erhalten | Sowohl die Ausgangs -Iterator als auch der STL -Container werden für die Array -Antwort verwendet. Der Unterschied besteht darin, dass STL -Container normalerweise mit generischer Befehlsschnittstelle verwendet wird. Siehe zum Beispiel den Abschnitt STL Container |
Der Rückgabetyp einiger Methoden, z. B. EXPIRE , HSET , ist bool . Wenn die Methode false zurückgibt, bedeutet dies nicht, dass Redis den Befehl nicht an redis server senden konnte. Stattdessen bedeutet dies, dass Redis Server eine Ganzzahl Antwort zurückgibt und der Wert der Antwort 0 beträgt. Wenn die Methode true zurückgibt, bedeutet dies, dass Redis Server eine Ganzzahl Antwort zurückgibt und der Wert der Antwort 1 ist. Sie können Redis -Befehlshandbuch für die von 0 und 1 stehen.
Wenn wir beispielsweise den Befehl EXPIRE an redis server senden, gibt es 1 zurück, wenn das Timeout festgelegt wurde, und es gibt 0 zurück, wenn der Schlüssel nicht vorhanden ist. Wenn das Timeout festgelegt wurde, kehrt Redis::expire true zurück, und wenn der Schlüssel nicht vorhanden ist, gibt Redis::expire false zurück.
Verwenden Sie also niemals den Rückgabewert, um zu überprüfen, ob der Befehl erfolgreich an Redis Server gesendet wurde. Wenn Redis den Befehl nicht an den Server nicht senden konnte, wird eine Ausnahme von Typ Error ausgelöst. Weitere Informationen zu Ausnahmen finden Sie im Abschnitt Ausnahme.
STD :: Optional ist eine gute Option für den Rückgabetyp, wenn Redis die NULL -Antwort zurückgeben kann. std::optional wird jedoch in C ++ 17 Standard eingeführt, und wenn Sie Redis -Plus -Plus mit -std=c++11 Standard erstellen (dh durch Angabe von -DREDIS_PLUS_PLUS_CXX_STANDARD=11 mit CMake -Befehl), implementieren wir unsere eigene Version, dh template Optional<T> . Wenn Sie stattdessen Redis-Plus-Plus mit -std=c++17 Standard (dh das Standardverhalten) erstellen, können Sie std::optional verwenden, und wir haben einen Alias dafür: template <typename T> using Optional = std::optional<T> .
Nehmen Sie die Befehle GET und MGET zum Beispiel:
// Or just: auto val = redis.get("key");
Optional<std::string> val = redis.get( " key " );
// Optional<T> has a conversion to bool.
// If it's NOT a null Optional<T> object, it's converted to true.
// Otherwise, it's converted to false.
if (val) {
// Key exists. Dereference val to get the string result.
std::cout << *val << std::endl;
} else {
// Redis server returns a NULL Bulk String Reply.
// It's invalid to dereference a null Optional<T> object.
std::cout << " key doesn't exist. " << std::endl;
}
std::vector<Optional<std::string>> values;
redis.mget({ " key1 " , " key2 " , " key3 " }, std::back_inserter(values));
for ( const auto &val : values) {
if (val) {
// Key exist, process the value.
}
} Wir haben auch einige Typedefs für einige häufig verwendete Optional<T> :
using OptionalString = Optional<std::string>;
using OptionalLongLong = Optional< long long >;
using OptionalDouble = Optional< double >;
using OptionalStringPair = Optional<std::pair<std::string, std::string>>; STD :: Variante ist eine gute Option für den Rückgabetyp, wenn die Antwort möglicherweise unterschiedliche Typen hat. Der Befehl MEMORY STATS gibt beispielsweise eine Array-Antwort zurück, die tatsächlich eine Karte von Schlüsselwertpaaren von Konfigurationen ist:
127.0.0.1: 6379> memory stats
1) " peak.allocated "
2) (integer) 4471104
...
17) " db.0 "
18) 1) " overhead.hashtable.main "
2) (integer) 104
3) " overhead.hashtable.expires "
4) (integer) 32
...
27) " dataset.percentage "
28) " 9.70208740234375 "
... Wie Sie jedoch sehen können, kann der Wertteil des Ergebnisses vom Typ lang (Schlüssel: Peak.allocated ), Double (Schlüssel: Datensatz.Percentage ) oder sogar eine Karte (Schlüssel: DB.0 ) sein. Sie können das Ergebnis also nicht einfach in ein std::unordered_map<std::string, long long> oder std::unordered_map<std::string, double> analysieren. Eine Problemumgehung besteht darin, das Ergebnis in ein tuple zu analysieren. Diese Tupellösung ist jedoch hässlich und fehleranfällig. Überprüfen Sie dieses Problem für Details.
In diesem Fall ist Variant , die ein Typedef von std::variant ist, wenn Sie Redis-plus-plus mit C ++ 17 Standard erstellen, sehr hilfreich. Sie können das Ergebnis zu einem std::unordered_map<std::string, Variant<double, long long, std::unordered_map<std::string, long long>>> analysieren.
using Var = Variant< double , long long , std::unordered_map<std::string, long long >>;
auto r = Redis( " tcp://127.0.0.1 " );
auto v = r.command<std::unordered_map<std::string, Var>>( " memory " , " stats " ); Es gibt einige Einschränkungen bei der Unterstützung Variant :
Variant können keine doppelten Elemente haben, z. B. Variant<double, long long, double> funktioniert nicht.double muss vor std::string platziert werden. Da double Antwort tatsächlich die String -Antwort ist und beim Parsenvariante versuchen wir, die Antwort in den ersten übereinstimmenden Typ zu analysieren, der mit den Typ -Argumenten von links nach rechts angegeben ist. Wenn also double nach std::string platziert wird, dh auf der rechten Seite von std::string wird die Antwort immer in std::string analysiert.Überprüfen Sie auch den Abschnitt "Generic Command" für weitere Beispiele zur generischen Befehlsschnittstelle.
Wenn Sie die generische Befehlsschnittstelle verwenden, können Sie sie auch in einen STL -Container analysieren, anstatt die Antwort auf den Ausgabe -Iterator zu analysieren.
auto r = Redis( " tcp://127.0.0.1 " );
auto v = r.command<std::unordered_map<std::string, std::string>>( " config " , " get " , " * " );Überprüfen Sie auch den Abschnitt "Generic Command" für weitere Beispiele zur generischen Befehlsschnittstelle.
Sehen wir uns einige Beispiele dafür an, wie Sie Befehle an redis server senden.
// ***** Parameters of StringView type *****
// Implicitly construct StringView with c-style string.
redis.set( " key " , " value " );
// Implicitly construct StringView with std::string.
std::string key ( " key " );
std::string val ( " value " );
redis.set(key, val);
// Explicitly pass StringView as parameter.
std::vector< char > large_data;
// Avoid copying.
redis.set( " key " , StringView(large_data.data(), large_data.size()));
// ***** Parameters of long long type *****
// For index.
redis.bitcount(key, 1 , 3 );
// For number.
redis.incrby( " num " , 100 );
// ***** Parameters of double type *****
// For score.
redis.zadd( " zset " , " m1 " , 2.5 );
redis.zadd( " zset " , " m2 " , 3.5 );
redis.zadd( " zset " , " m3 " , 5 );
// For (longitude, latitude).
redis.geoadd( " geo " , std::make_tuple( " member " , 13.5 , 15.6 ));
// ***** Time-related parameters *****
using namespace std ::chrono ;
redis.expire(key, seconds( 1000 ));
auto tp = time_point_cast<seconds>(system_clock::now() + seconds( 100 ));
redis.expireat(key, tp);
// ***** Some options for commands *****
if (redis.set(key, " value " , milliseconds( 100 ), UpdateType::NOT_EXIST)) {
std::cout << " set OK " << std::endl;
}
redis.linsert( " list " , InsertPosition::BEFORE, " pivot " , " val " );
std::vector<std::string> res;
// (-inf, inf)
redis.zrangebyscore( " zset " , UnboundedInterval< double >{}, std::back_inserter(res));
// [3, 6]
redis.zrangebyscore( " zset " ,
BoundedInterval< double >( 3 , 6 , BoundType::CLOSED),
std::back_inserter (res));
// (3, 6]
redis.zrangebyscore( " zset " ,
BoundedInterval< double >( 3 , 6 , BoundType::LEFT_OPEN),
std::back_inserter (res));
// (3, 6)
redis.zrangebyscore( " zset " ,
BoundedInterval< double >( 3 , 6 , BoundType::OPEN),
std::back_inserter (res));
// [3, 6)
redis.zrangebyscore( " zset " ,
BoundedInterval< double >( 3 , 6 , BoundType::RIGHT_OPEN),
std::back_inserter (res));
// [3, +inf)
redis.zrangebyscore( " zset " ,
LeftBoundedInterval< double >( 3 , BoundType::RIGHT_OPEN),
std::back_inserter (res));
// (3, +inf)
redis.zrangebyscore( " zset " ,
LeftBoundedInterval< double >( 3 , BoundType::OPEN),
std::back_inserter (res));
// (-inf, 6]
redis.zrangebyscore( " zset " ,
RightBoundedInterval< double >( 6 , BoundType::LEFT_OPEN),
std::back_inserter (res));
// (-inf, 6)
redis.zrangebyscore( " zset " ,
RightBoundedInterval< double >( 6 , BoundType::OPEN),
std::back_inserter (res));
// ***** Pair of iterators *****
std::vector<std::pair<std::string, std::string>> kvs = {{ " k1 " , " v1 " }, { " k2 " , " v2 " }, { " k3 " , " v3 " }};
redis.mset(kvs.begin(), kvs.end());
std::unordered_map<std::string, std::string> kv_map = {{ " k1 " , " v1 " }, { " k2 " , " v2 " }, { " k3 " , " v3 " }};
redis.mset(kv_map.begin(), kv_map.end());
std::unordered_map<std::string, std::string> str_map = {{ " f1 " , " v1 " }, { " f2 " , " v2 " }, { " f3 " , " v3 " }};
redis.hmset( " hash " , str_map.begin(), str_map.end());
std::unordered_map<std::string, double > score_map = {{ " m1 " , 20 }, { " m2 " , 12.5 }, { " m3 " , 3.14 }};
redis.zadd( " zset " , score_map.begin(), score_map.end());
std::vector<std::string> keys = { " k1 " , " k2 " , " k3 " };
redis.del(keys.begin(), keys.end());
// ***** Parameters of initializer_list type *****
redis.mset({
std::make_pair ( " k1 " , " v1 " ),
std::make_pair ( " k2 " , " v2 " ),
std::make_pair ( " k3 " , " v3 " )
});
redis.hmset( " hash " ,
{
std::make_pair ( " f1 " , " v1 " ),
std::make_pair ( " f2 " , " v2 " ),
std::make_pair ( " f3 " , " v3 " )
});
redis.zadd( " zset " ,
{
std::make_pair ( " m1 " , 20.0 ),
std::make_pair ( " m2 " , 34.5 ),
std::make_pair ( " m3 " , 23.4 )
});
redis.del({ " k1 " , " k2 " , " k3 " }); // ***** Return void *****
redis.save();
// ***** Return std::string *****
auto info = redis.info();
// ***** Return bool *****
if (!redis.expire( " nonexistent " , std::chrono::seconds( 100 ))) {
std::cerr << " key doesn't exist " << std::endl;
}
if (redis.setnx( " key " , " val " )) {
std::cout << " set OK " << std::endl;
}
// ***** Return long long *****
auto len = redis.strlen( " key " );
auto num = redis.del({ " a " , " b " , " c " });
num = redis.incr( " a " );
// ***** Return double *****
auto real = redis.incrbyfloat( " b " , 23.4 );
real = redis.hincrbyfloat( " c " , " f " , 34.5 );
// ***** Return Optional<std::string>, i.e. OptionalString *****
auto os = redis.get( " kk " );
if (os) {
std::cout << *os << std::endl;
} else {
std::cerr << " key doesn't exist " << std::endl;
}
os = redis.spop( " set " );
if (os) {
std::cout << *os << std::endl;
} else {
std::cerr << " set is empty " << std::endl;
}
// ***** Return Optional<long long>, i.e. OptionalLongLong *****
auto oll = redis.zrank( " zset " , " mem " );
if (oll) {
std::cout << " rank is " << *oll << std::endl;
} else {
std::cerr << " member doesn't exist " << std::endl;
}
// ***** Return Optional<double>, i.e. OptionalDouble *****
auto ob = redis.zscore( " zset " , " m1 " );
if (ob) {
std::cout << " score is " << *ob << std::endl;
} else {
std::cerr << " member doesn't exist " << std::endl;
}
// ***** Return Optional<pair<string, string>> *****
auto op = redis.blpop({ " list1 " , " list2 " }, std::chrono::seconds( 2 ));
if (op) {
std::cout << " key is " << op-> first << " , value is " << op-> second << std::endl;
} else {
std::cerr << " timeout " << std::endl;
}
// ***** Output iterators *****
std::vector<OptionalString> os_vec;
redis.mget({ " k1 " , " k2 " , " k3 " }, std::back_inserter(os_vec));
std::vector<std::string> s_vec;
redis.lrange( " list " , 0 , - 1 , std::back_inserter(s_vec));
std::unordered_map<std::string, std::string> hash;
redis.hgetall( " hash " , std::inserter(hash, hash.end()));
// You can also save the result in a vecotr of string pair.
std::vector<std::pair<std::string, std::string>> hash_vec;
redis.hgetall( " hash " , std::back_inserter(hash_vec));
std::unordered_set<std::string> str_set;
redis.smembers( " s1 " , std::inserter(str_set, str_set.end()));
// You can also save the result in a vecotr of string.
s_vec.clear();
redis.smembers( " s1 " , std::back_inserter(s_vec));sw::redis::Cursor cursor = 0 ;
auto pattern = " *pattern* " ;
auto count = 5 ;
std::unordered_set<std::string> keys;
while ( true ) {
cursor = redis. scan (cursor, pattern, count, std::inserter (keys, keys. begin ()));
// Default pattern is "*", and default count is 10
// cursor = redis.scan(cursor, std::inserter(keys, keys.begin()));
if (cursor == 0 ) {
break ;
}
}Manchmal entscheidet die Art des Ausgabe -Iterators, welche Optionen mit dem Befehl senden sollen.
// If the output iterator is an iterator of a container of string,
// we send *ZRANGE* command without the *WITHSCORES* option.
std::vector<std::string> members;
redis.zrange( " list " , 0 , - 1 , std::back_inserter(members));
// If it's an iterator of a container of a <string, double> pair,
// we send *ZRANGE* command with *WITHSCORES* option.
std::vector<std::pair<std::string, double >> res_with_score;
redis.zrange( " list " , 0 , - 1 , std::back_inserter(res_with_score));
// The above examples also apply to other command with the *WITHSCORES* options,
// e.g. *ZRANGEBYSCORE*, *ZREVRANGE*, *ZREVRANGEBYSCORE*.
// Another example is the *GEORADIUS* command.
// Only get members.
members.clear();
redis.georadius( " geo " ,
std::make_pair ( 10.1 , 11.1 ),
100,
GeoUnit::KM,
10,
true,
std::back_inserter(members));
// If the iterator is an iterator of a container of tuple<string, double>,
// we send the *GEORADIUS* command with *WITHDIST* option.
std::vector<std::tuple<std::string, double >> mem_with_dist;
redis.georadius( " geo " ,
std::make_pair ( 10.1 , 11.1 ),
100,
GeoUnit::KM,
10,
true,
std::back_inserter(mem_with_dist));
// If the iterator is an iterator of a container of tuple<string, double, string>,
// we send the *GEORADIUS* command with *WITHDIST* and *WITHHASH* options.
std::vector<std::tuple<std::string, double , std::string>> mem_with_dist_hash;
redis.georadius( " geo " ,
std::make_pair ( 10.1 , 11.1 ),
100,
GeoUnit::KM,
10,
true,
std::back_inserter(mem_with_dist_hash));
// If the iterator is an iterator of a container of
// tuple<string, string, pair<double, double>, double>,
// we send the *GEORADIUS* command with *WITHHASH*, *WITHCOORD* and *WITHDIST* options.
std::vector<std::tuple<std::string, double , std::string>> mem_with_hash_coord_dist;
redis.georadius( " geo " ,
std::make_pair ( 10.1 , 11.1 ),
100,
GeoUnit::KM,
10,
true,
std::back_inserter(mem_with_hash_coord_dist));Bitte beachten Sie die API -Referenzen und -Plänen von REDIS.H für Doxygen -Stil -API -Referenzen und die Tests für andere Beispiele.
Redis löst Ausnahmen aus, wenn es eine Fehlerantwort empfängt oder etwas Schlimmes passiert, z. B. eine Verbindung zum Server oder eine Verbindung zum Server ist gebrochen. Alle Ausnahmen aus Error . Weitere Informationen finden Sie in Fehlern.h.
Error : Generischer Fehler. Es leitet sich von std::exception ab und ist auch die Basisklasse anderer Ausnahmen.IoError : Es gibt einen IO -Fehler mit der Verbindung.TimeoutError : Lesen oder Schreiben von Operation wurde zeitlich festgelegt. Es ist eine abgeleitete Klasse von IoError .ClosedError : REDIS -Server schloss die Verbindung.ProtoError : Der Befehl oder die Antwort ist ungültig, und wir können ihn nicht mit Redis -Protokoll verarbeiten.OomError : Die Hiredis -Bibliothek hat einen außererheiligen Fehler.ReplyError : Redis Server hat eine Fehlerantwort zurückgegeben, z. B. wir versuchen redis::lrange auf einem Redis -Hash.WatchError : Der Uhrschlüssel wurde geändert. Weitere Informationen finden Sie im Abschnitt Übersehen. HINWEIS : NULL -Antwort wird nicht als Ausnahme angenommen. Wenn wir beispielsweise versuchen, einen nicht existierenden Schlüssel zu GET , erhalten wir eine Null-Bulk-String-Antwort . Anstatt eine Ausnahme auszulegen, geben wir die NULL -Antwort als null Optional<T> -Objekt zurück. Siehe auch optionalen Abschnitt.
Normalerweise müssen Sie bei Ausnahme kein Redis -Objekt erstellen. Es ist eine Ausnahme sicher, und Sie können das Redis -Objekt wiederverwenden. Auch wenn die Verbindung zum REDIS -Server defekt ist und eine Ausnahme, beispielsweise IoError , ausgelöst wird. Wenn Sie das nächste Mal mit dem Redis -Objekt den Befehl senden, wird versucht, den REDIS -Server automatisch wieder zu verbinden. Diese Regel gilt auch für RedisCluster . Wenn jedoch Pipeline , Transcation und Subscriber eine Ausnahme ausgelegt haben, müssen Sie das Objekt zerstören und eine neue erstellen. Einzelheiten finden Sie in der entsprechenden Dokumentation.
Das Folgende ist ein Beispiel, wie man diese Ausnahmen fängt:
try {
redis. set ( " key " , " value " );
// Wrong type error
redis. lpush ( " key " , { " a " , " b " , " c " });
} catch ( const ReplyError &err) {
// WRONGTYPE Operation against a key holding the wrong kind of value
cout << err. what () << endl;
} catch ( const TimeoutError &err) {
// reading or writing timeout
} catch ( const ClosedError &err) {
// the connection has been closed.
} catch ( const IoError &err) {
// there's an IO error on the connection.
} catch ( const Error &err) {
// other errors
} Es gibt zu viele Redis -Befehle, wir haben nicht alle implementiert. Sie können jedoch die allgemeinen Befehlsmethoden für generische Redis::command verwenden, um Befehle an Redis zu senden. Im Gegensatz zu anderen Client -Bibliotheken verwendet Redis::command keine Formatzeichenfolge, um Befehlsargumente in einer Befehlszeichenfolge zu kombinieren. Stattdessen können Sie die Befehlsargumente des StringView -Typs oder des arithmetischen Typs als Parameter von Redis::command direkt übergeben. Aus dem Grund, warum wir keine Formatzeichenfolge verwenden, sehen Sie sich diese Diskussion an.
auto redis = Redis( " tcp://127.0.0.1 " );
// Redis class doesn't have built-in *CLIENT SETNAME* method.
// However, you can use Redis::command to send the command manually.
redis.command< void >( " client " , " setname " , " name " );
auto val = redis.command<OptionalString>( " client " , " getname " );
if (val) {
std::cout << *val << std::endl;
}
// NOTE: the following code is for example only. In fact, Redis has built-in
// methods for the following commands.
// Arguments of the command can be strings.
// NOTE: for SET command, the return value is NOT always void, I'll explain latter.
redis.command< void >( " set " , " key " , " 100 " );
// Arguments of the command can be a combination of strings and integers.
auto num = redis.command< long long >( " incrby " , " key " , 1 );
// Argument can also be double.
auto real = redis.command< double >( " incrbyfloat " , " key " , 2.3 );
// Even the key of the command can be of arithmetic type.
redis.command< void >( " set " , 100 , " value " );
val = redis.command<OptionalString>( " get " , 100 );
// If the command returns an array of elements.
std::vector<OptionalString> result;
redis.command( " mget " , " k1 " , " k2 " , " k3 " , std::back_inserter(result));
// Or just parse it into a vector.
result = redis.command<std::vector<OptionalString>>( " mget " , " k1 " , " k2 " , " k3 " );
// Arguments of the command can be a range of strings.
auto set_cmd_strs = { " set " , " key " , " value " };
redis.command< void >(set_cmd_strs.begin(), set_cmd_strs.end());
auto get_cmd_strs = { " get " , " key " };
val = redis.command<OptionalString>(get_cmd_strs.begin(), get_cmd_strs.end());
// If it returns an array of elements.
result.clear();
auto mget_cmd_strs = { " mget " , " key1 " , " key2 " };
redis.command(mget_cmd_strs.begin(), mget_cmd_strs.end(), std::back_inserter(result)); Hinweis : Der Name einiger Redis -Befehle wird mit zwei Zeichenfolgen komponiert, z. B. Client -SetName . In diesem Fall müssen Sie diese beiden Zeichenfolgen als zwei Argumente für Redis::command übergeben.
// This is GOOD.
redis.command< void >( " client " , " setname " , " name " );
// This is BAD, and will fail to send command to Redis server.
// redis.command<void>("client setname", "name"); Wie ich in den Kommentaren erwähnt habe, gibt der Befehl SET nicht immer void zurück. Because if you try to set a (key, value) pair with NX or XX option, you might fail, and Redis will return a NULL REPLY . Besides the SET command, there're other commands whose return value is NOT a fixed type, you need to parse it by yourself. For example, Redis::set method rewrite the reply of SET command, and make it return bool type, ie if no NX or XX option specified, Redis server will always return an "OK" string, and Redis::set returns true ; if NX or XX specified, and Redis server returns a NULL REPLY , Redis::set returns false .
So Redis class also has other overloaded command methods, these methods return a ReplyUPtr , ie std::unique_ptr<redisReply, ReplyDeleter> , object. Normally you don't need to parse it manually. Instead, you only need to pass the reply to template <typename T> T reply::parse(redisReply &) to get a value of type T . Check the Return Type section for valid T types. If the command returns an array of elements, besides calling reply::parse to parse the reply to an STL container, you can also call template <typename Output> reply::to_array(redisReply &reply, Output output) to parse the result into an array or STL container with an output iterator.
Let's rewrite the above examples:
auto redis = Redis( " tcp://127.0.0.1 " );
redis.command( " client " , " setname " , " name " );
auto r = redis.command( " client " , " getname " );
assert (r);
// If the command returns a single element,
// use `reply::parse<T>(redisReply&)` to parse it.
auto val = reply::parse<OptionalString>(*r);
if (val) {
std::cout << *val << std::endl;
}
// Arguments of the command can be strings.
redis.command( " set " , " key " , " 100 " );
// Arguments of the command can be a combination of strings and integers.
r = redis.command( " incrby " , " key " , 1 );
auto num = reply::parse< long long >(*r);
// Argument can also be double.
r = redis.command( " incrbyfloat " , " key " , 2.3 );
auto real = reply::parse< double >(*r);
// Even the key of the command can be of arithmetic type.
redis.command( " set " , 100 , " value " );
r = redis.command( " get " , 100 );
val = reply::parse<OptionalString>(*r);
// If the command returns an array of elements.
r = redis.command( " mget " , " k1 " , " k2 " , " k3 " );
// Use `reply::to_array(redisReply&, OutputIterator)` to parse the result into an STL container.
std::vector<OptionalString> result;
reply::to_array (*r, std::back_inserter(result));
// Or just call `reply::parse` to parse it into vector.
result = reply::parse<std::vector<OptionalString>>(*r);
// Arguments of the command can be a range of strings.
auto get_cmd_strs = { " get " , " key " };
r = redis.command(get_cmd_strs.begin(), get_cmd_strs.end());
val = reply::parse<OptionalString>(*r);
// If it returns an array of elements.
result.clear();
auto mget_cmd_strs = { " mget " , " key1 " , " key2 " };
r = redis.command(mget_cmd_strs.begin(), mget_cmd_strs.end());
reply::to_array (*r, std::back_inserter(result)); In fact, there's one more Redis::command method:
template < typename Cmd, typename ...Args>
auto command (Cmd cmd, Args &&...args)
-> typename std::enable_if<!std::is_convertible<Cmd, StringView>::value, ReplyUPtr>::type;However, this method exposes some implementation details, and is only for internal use. You should NOT use this method.
You can use Redis::publish to publish messages to channels. Redis randomly picks a connection from the underlying connection pool, and publishes message with that connection. So you might publish two messages with two different connections.
When you subscribe to a channel with a connection, all messages published to the channel are sent back to that connection. So there's NO Redis::subscribe method. Instead, you can call Redis::subscriber to create a Subscriber and the Subscriber maintains a connection to Redis. The underlying connection is a new connection, NOT picked from the connection pool. This new connection has the same ConnectionOptions as the Redis object.
If you want to have different connection options, eg ConnectionOptions::socket_timeout , for different channels, you should create Redis objects with different connection options, then you can create Subscriber objects with these Redis objects. Check this issue for a use case.
ConnectionOptions opts1;
opts1.host = " 127.0.0.1 " ;
opts1.port = 6379 ;
opts1.socket_timeout = std::chrono::milliseconds( 100 );
auto redis1 = Redis(opts1);
// sub1's socket_timeout is 100ms.
auto sub1 = redis1.subscriber();
ConnectionOptions opts2;
opts2.host = " 127.0.0.1 " ;
opts2.port = 6379 ;
opts2.socket_timeout = std::chrono::milliseconds( 300 );
auto redis2 = Redis(opts2);
// sub2's socket_timeout is 300ms.
auto sub2 = redis2.subscriber(); NOTE : Although the above code creates two Redis objects, it has no performance penalty. Because Redis object creates connections lazily, ie no connection will be created until we send some command with Redis object, and the connection is created only when we call Redis::subscriber to create Subscriber object.
With Subscriber , you can call Subscriber::subscribe , Subscriber::unsubscribe , Subscriber::psubscribe and Subscriber::punsubscribe to send SUBSCRIBE , UNSUBSCRIBE , PSUBSCRIBE and PUNSUBSCRIBE commands to Redis.
Subscriber is NOT thread-safe. If you want to call its member functions in multi-thread environment, you need to synchronize between threads manually.
If any of the Subscriber 's method throws an exception other than ReplyError or TimeoutError , you CANNOT use it any more. Instead, you have to destroy the Subscriber object, and create a new one.
There are 6 kinds of messages:
We call messages of SUBSCRIBE , UNSUBSCRIBE , PSUBSCRIBE and PUNSUBSCRIBE types as META MESSAGE s.
In order to process these messages, you can set callback functions on Subscriber :
Subscriber::on_message(MsgCallback) : set callback function for messages of MESSAGE type, and the callback interface is: void (std::string channel, std::string msg) .Subscriber::on_pmessage(PatternMsgCallback) : set the callback function for messages of PMESSAGE type, and the callback interface is: void (std::string pattern, std::string channel, std::string msg) .Subscriber::on_meta(MetaCallback) : set callback function for messages of META MESSAGE type, and the callback interface is: void (Subscriber::MsgType type, OptionalString channel, long long num) . type is an enum, it can be one of the following enum: Subscriber::MsgType::SUBSCRIBE , Subscriber::MsgType::UNSUBSCRIBE , Subscriber::MsgType::PSUBSCRIBE , Subscriber::MsgType::PUNSUBSCRIBE , Subscriber::MsgType::MESSAGE , and Subscriber::MsgType::PMESSAGE . If you haven't subscribe/psubscribe to any channel/pattern, and try to unsubscribe/punsubscribe without any parameter, ie unsubscribe/punsubscribe all channels/patterns, channel will be null. So the second parameter of meta callback is of type OptionalString . All these callback interfaces pass std::string by value, and you can take their ownership (ie std::move ) safely.
You can call Subscriber::consume to consume messages published to channels/patterns that the Subscriber has been subscribed.
Subscriber::consume waits for message from the underlying connection. If the ConnectionOptions::socket_timeout is reached, and there's no message sent to this connection, Subscriber::consume throws a TimeoutError exception. If ConnectionOptions::socket_timeout is 0ms , Subscriber::consume blocks until it receives a message.
After receiving the message, Subscriber::consume calls the callback function to process the message based on message type. However, if you don't set callback for a specific kind of message, Subscriber::consume will consume the received message and discard it, ie Subscriber::consume returns without running the callback.
The following example is a common pattern for using Subscriber :
// Create a Subscriber.
auto sub = redis.subscriber();
// Set callback functions.
sub.on_message([](std::string channel, std::string msg) {
// Process message of MESSAGE type.
});
sub.on_pmessage([](std::string pattern, std::string channel, std::string msg) {
// Process message of PMESSAGE type.
});
sub.on_meta([](Subscriber::MsgType type, OptionalString channel, long long num) {
// Process message of META type.
});
// Subscribe to channels and patterns.
sub.subscribe( " channel1 " );
sub.subscribe({ " channel2 " , " channel3 " });
sub.psubscribe( " pattern1* " );
// Consume messages in a loop.
while ( true ) {
try {
sub. consume ();
} catch ( const Error &err) {
// Handle exceptions.
}
} If ConnectionOptions::socket_timeout is set, you might get TimeoutError exception before receiving a message:
while ( true ) {
try {
sub. consume ();
} catch ( const TimeoutError &e) {
// Try again.
continue ;
} catch ( const Error &err) {
// Handle other exceptions.
}
}The above examples use lambda as callback. If you're not familiar with lambda, you can also set a free function as callback. Check this issue for detail.
Pipeline is used to reduce RTT (Round Trip Time), and speed up Redis queries. redis-plus-plus supports pipeline with the Pipeline class.
You can create a pipeline with Redis::pipeline method, which returns a Pipeline object.
ConnectionOptions connection_options;
ConnectionPoolOptions pool_options;
Redis redis (connection_options, pool_options);
auto pipe = redis.pipeline(); When creating a Pipeline object, by default, Redis::pipeline method creates a new connection to Redis server. This connection is NOT picked from the connection pool, but a newly created connection. This connection has the same ConnectionOptions as other connections in the connection pool. Pipeline object maintains the new connection, and all piped commands are sent through this connection.
NOTE : By default, creating a Pipeline object is NOT cheap, since it creates a new connection. So you'd better reuse the Pipeline object as much as possible. Check this to see how to create a Pipeline object without creating a new connection.
You can send Redis commands through the Pipeline object. Just like the Redis class, Pipeline has one or more (overloaded) methods for each Redis command. However, you CANNOT get the replies until you call Pipeline::exec . So these methods do NOT return the reply, instead they return the Pipeline object itself. And you can chain these methods calls.
pipe.set( " key " , " val " ).incr( " num " ).rpush( " list " , { 0 , 1 , 2 }).command( " hset " , " key " , " field " , " value " ); Once you finish sending commands to Redis, you can call Pipeline::exec to get replies of these commands. You can also chain Pipeline::exec with other commands.
pipe.set( " key " , " val " ).incr( " num " );
auto replies = pipe.exec();
// The same as:
replies = pipe.set( " key " , " val " ).incr( " num " ).exec(); In fact, these commands won't be sent to Redis, until you call Pipeline::exec . So Pipeline::exec does 2 work in order: send all piped commands, then get all replies from Redis.
Also you can call Pipeline::discard to discard those piped commands.
pipe.set( " key " , " val " ).incr( " num " );
pipe.discard(); Pipeline::exec returns a QueuedReplies object, which contains replies of all commands that have been sent to Redis. You can use QueuedReplies::get method to get and parse the ith reply. It has 3 overloads:
template <typename Result> Result get(std::size_t idx) : Return the ith reply as a return value, and you need to specify the return type as tempalte parameter.template <typename Output> void get(std::size_t idx, Output output) : If the reply is of type Array Reply , you can call this method to write the ith reply to an output iterator. Normally, compiler will deduce the type of the output iterator, and you don't need to specify the type parameter explicitly.redisReply& get(std::size_t idx) : If the reply is NOT a fixed type, call this method to get a reference to redisReply object. In this case, you need to call template <typename T> T reply::parse(redisReply &) to parse the reply manually.Check the Return Type section for details on the return types of the result.
auto replies = pipe.set( " key " , " val " ).incr( " num " ).lrange( " list " , 0 , - 1 ).exec();
auto set_cmd_result = replies.get< bool >( 0 );
auto incr_cmd_result = replies.get< long long >( 1 );
std::vector<std::string> list_cmd_result;
replies.get( 2 , std::back_inserter(list_cmd_result)); If any of Pipeline 's method throws an exception other than ReplyError , the Pipeline object enters an invalid state. You CANNOT use it any more, but only destroy the object, and create a new one.
Pipeline is NOT thread-safe. If you want to call its member functions in multi-thread environment, you need to synchronize between threads manually.
YOU MUST CAREFULLY READ ALL WORDS IN THIS SECTION AND THE VERY IMPORTANT NOTES BEFORE USING THIS FEATURE!!!
In fact, you can also create a Pipeline object with a connection from the underlying connection pool, so that calling Redis::pipeline method can be much cheaper (since it doesn't need to create a new connection).
The prototype of Redis::pipeline is as follows: Pipeline pipeline(bool new_connection = true); . If new_connection is false, the Pipeline object will be created with a connection from the underlying pool.
ConnectionOptions connection_options;
ConnectionPoolOptions pool_options;
Redis redis (connection_options, pool_options);
// Create a Pipeline without creating a new connection.
auto pipe = redis.pipeline( false ); However, in this case, you MUST be very careful, otherwise, you might get bad performance or even dead lock. Because when you run command with Pipeline object, it will hold the connection until Pipeline::exec , Pipeline::discard or Pipeline 's destructor is called (the connection will also be released if any method of Pipeline throws Exception ). If the Pipeline object holds the connection for a long time, other Redis methods might not be able to get a connection from the underlying pool.
Check the following dead lock example:
// By defaul, create a `Redis` object with only ONE connection in pool.
// Also by default, the `ConnectionPoolOptions::wait_timeout` is 0ms,
// which means if the pool is empty, `Redis` method will be blocked until
// the pool is not empty.
Redis redis ( " tcp://127.0.0.1 " );
// Create a `Pipeline` with a connection in the underlying pool.
// In fact, the connection hasn't been fetched from the pool
// until some method of `Pipeline` has been called.
auto pipe = redis.pipeline( false );
// Now the `Pipeline` object fetches a connection from the pool.
pipe.set( " key1 " , " val " );
// `Pipeline` object still holds the connection until `Pipeline::exec`,
// `Pipeline::discard` or the destructor is called.
pipe.set( " key2 " , " val " );
// Try to send a command with `Redis` object.
// However, the pool is empty, since the `Pipeline` object still holds
// the connection, and this call will be blocked forever.
// DEAD LOCK!!!
redis.get( " key " );
// NEVER goes here.
pipe.exec();BEST PRACTICE :
When creating Pipeline without creating a new connection:
ConnectionPoolOptions::wait_timeout larger than 0ms (ie when pool is empty, never block forever).Pipeline 's methods.Pipeline methods and the Pipeline::exec in one statements.Pipeline related code in a block scope. ConnectionOptions opts;
opts.host = " 127.0.0.1 " ;
opts.port = 6379 ;
opts.socket_timeout = std::chrono::milliseconds( 50 );
ConnectionPoolOptions pool_opts;
pool_opts.size = 3 ;
// Always set `wait_timeout` larger than 0ms.
pool_opts.wait_timeout = std::chrono::milliseconds( 50 );
auto redis = Redis(opts, pool_opts);
{
// Better put `Pipeline` related code in a block scope.
auto pipe = redis. pipeline ( false );
pipe . set ( " key1 " , " val " );
// DON'T run slow operations here, since `Pipeline` object still holds
// the connection, other threads using this `Redis` object, might be blocked.
pipe . set ( " key2 " , " val " );
// When `Pipeline::exec` finishes, `Pipeline` releases the connection, and returns it to pool.
auto replies = pipe . exec ();
// This is even better, i.e. chain `Pipeline` methods with `Pipeline::exec`.
replies = pipe . set ( " key1 " , " val " ). set ( " key2 " , " val " ). exec ();
}
for ( auto i = 0 ; i < 10 ; ++i) {
// This operation, i.e. creating a `Pipeline` object with connection in pool, is cheap
auto pipe = redis. pipeline ( false );
// Fetch a connection from the underlying pool, and hold it.
pipe . set ( " key1 " , " val " ). set ( " key2 " , " val " );
// Although `Pipeline::exec` and `Pipeline::discard` haven't been called,
// when `Pipeline`'s destructor is called, the connection will also be
// returned to the pool.
}Transaction is used to make multiple commands runs atomically.
You can create a transaction with Redis::transaction method, which returns a Transaction object.
ConnectionOptions connection_options;
ConnectionPoolOptions pool_options;
Redis redis (connection_options, pool_options);
auto tx = redis.transaction(); As the Pipeline class, Transaction maintains a newly created connection to Redis. This connection has the same ConnectionOptions as the Redis object.
NOTE : Creating a Transaction object is NOT cheap, since it creates a new connection. So you'd better reuse the Transaction as much as possible. Check this to see how to create a Transaction object without creating a new connection.
Also you don't need to send MULTI command to Redis. Transaction will do that for you automatically.
Transaction shares most of implementation with Pipeline . It has the same interfaces as Pipeline . You can send commands as what you do with Pipeline object.
tx.set( " key " , " val " ).incr( " num " ).lpush( " list " , { 0 , 1 , 2 }).command( " hset " , " key " , " field " , " val " ); When you call Transaction::exec , you explicitly ask Redis to execute those queued commands, and return the replies. Otherwise, these commands won't be executed. Also, you can call Transaction::discard to discard the execution, ie no command will be executed. Both Transaction::exec and Transaction::discard can be chained with other commands.
auto replies = tx.set( " key " , " val " ).incr( " num " ).exec();
tx.set( " key " , " val " ).incr( " num " );
// Discard the transaction.
tx.discard();See Pipeline's Parse Replies section for how to parse the replies.
Normally, we always send multiple commnds in a transaction. In order to improve the performance, you can send these commands in a pipeline. You can create a piped transaction by passing true as parameter of Redis::transaction method.
// Create a piped transaction
auto tx = redis.transaction( true );With this piped transaction, all commands are sent to Redis in a pipeline.
If any of Transaction 's method throws an exception other than WatchError or ReplyError , the Transaction object enters an invalid state. You CANNOT use it any more, but only destroy the object and create a new one.
Transacation is NOT thread-safe. If you want to call its member functions in multi-thread environment, you need to synchronize between threads manually.
WATCH is used to provide a check-and-set(CAS) behavior to Redis transactions.
The WATCH command must be sent in the same connection as the transaction. And normally after the WATCH command, we also need to send some other commands to get data from Redis before executing the transaction. Take the following check-and-set case as an example:
WATCH key // watch a key
val = GET key // get value of the key
new_val = val + 1 // incr the value
MULTI // begin the transaction
SET key new_val // set value only if the value is NOT modified by others
EXEC // try to execute the transaction.
// if val has been modified, the transaction won't be executed.
However, with Transaction object, you CANNOT get the result of commands until the whole transaction has been finished. Instead, you need to create a Redis object from the Transaction object. The created Redis object shares the connection with Transaction object. With this created Redis object, you can send WATCH command and any other Redis commands to Redis server, and get the result immediately.
Let's see how to implement the above example with redis-plus-plus :
auto redis = Redis( " tcp://127.0.0.1 " );
// Create a transaction.
auto tx = redis.transaction();
// Create a Redis object from the Transaction object. Both objects share the same connection.
auto r = tx.redis();
// If the watched key has been modified by other clients, the transaction might fail.
// So we need to retry the transaction in a loop.
while ( true ) {
try {
// Watch a key.
r. watch ( " key " );
// Get the old value.
auto val = r. get ( " key " );
auto num = 0 ;
if (val) {
num = std::stoi (*val);
} // else use default value, i.e. 0.
// Incr value.
++num;
// Execute the transaction.
auto replies = tx. set ( " key " , std::to_string (num)). exec ();
// Transaction has been executed successfully. Check the result and break.
assert (replies. size () == 1 && replies. get < bool >( 0 ) == true );
break ;
} catch ( const WatchError &err) {
// Key has been modified by other clients, retry.
continue ;
} catch ( const Error &err) {
// Something bad happens, and the Transaction object is no longer valid.
throw ;
}
} NOTE : in the example above, we create Transaction object outside the while loop, in order to avoid creating new connection again and again.
NOTE : YOU MUST CAREFULLY READ ALL WORDS AND THE VERY IMPORTANT NOTES LINK IN THIS SECTION BEFORE USING THIS FEATURE!!!
In fact, you can also create a transaction object with a connection from the underlying connection pool, so that calling Redis::transaction method can be much cheaper (since it doesn't need to create a new connection).
The prototype of Redis::transaction is as follows: Transaction transaction(bool piped = false, bool new_connection = true); . If new_connection is false, the Transaction object will be created with a connection from the underlying pool.
ConnectionOptions connection_options;
ConnectionPoolOptions pool_options;
Redis redis (connection_options, pool_options);
// Create a Transaction without creating a new connection.
auto tx = redis.transaction( false , false );However, in this case, you MUST be very careful, otherwise, you might get bad performance or even dead lock. Please carefully check the similar pipeline's VERY IMPORTANT NOTES section, before you use it!
Besides those very important notes, there's another important note for Transaction :
Redis object created by Transaction::Redis , ie destroy it ASAP.Check the following example:
auto redis = Redis(opts, pool_opts);
// Create a `Transaction` object without creating a new connection.
auto tx = redis.Transaction( false , false );
// Create a `Redis`, and this `Redis` object shares the same connection with the `Transaction` object.
auto r = tx.redis();
// Other code here...
// Execute the transaction.
auto replies = tx.set( " key " , " val " ).exec();
// Although `Transaction::exec` has been called, the connection has not been returned to pool.
// Because the `Redis` object, i.e. `r`, still holds the connection.So the above watch example should be modified as follows:
auto redis = Redis(opts, pool_opts);
// If the watched key has been modified by other clients, the transaction might fail.
// So we need to retry the transaction in a loop.
while ( true ) {
try {
// Create a transaction without creating a new connection.
auto tx = redis. transaction ( false , false );
// Create a Redis object from the Transaction object. Both objects share the same connection.
auto r = tx. redis ();
// Watch a key.
r. watch ( " key " );
// Get the old value.
auto val = r. get ( " key " );
auto num = 0 ;
if (val) {
num = std::stoi (*val);
} // else use default value, i.e. 0.
// Incr value.
++num;
// Execute the transaction.
auto replies = tx. set ( " key " , std::to_string (num)). exec ();
// Transaction has been executed successfully. Check the result and break.
assert (replies. size () == 1 && replies. get < bool >( 0 ) == true );
break ;
} catch ( const WatchError &err) {
// Key has been modified by other clients, retry.
continue ;
} catch ( const Error &err) {
// Something bad happens, and the Transaction object is no longer valid.
throw ;
}
} NOTE : The difference is that we create the Transaction object in the while loop (it's cheap, since it doesn't need to create a new connection). When the Transaction object and the Redis object created by Transaction::redis have been destroyed, the connection will be return to pool.
redis-plus-plus supports Redis Cluster. You can use RedisCluster class to send commands to Redis Cluster. It has similar interfaces as Redis class.
By default, RedisCluster connects to all master nodes in the cluster. For each master node, it maintains a connection pool. If you want to read from slave nodes, you need to explicitly set an option (see below for reference).
You can initialize a RedisCluster instance with ConnectionOptions and ConnectionPoolOptions . You only need to set one master node's host & port in ConnectionOptions , and RedisCluster will get other nodes' info automatically (with the CLUSTER SLOTS command). For each master node, it creates a connection pool with the specified ConnectionPoolOptions . If ConnectionPoolOptions is not specified, RedisCluster maintains a single connection to every master node.
// Set a master node's host & port.
ConnectionOptions connection_options;
connection_options.host = " 127.0.0.1 " ; // Required.
connection_options.port = 7000 ; // Optional. The default port is 6379.
connection_options.password = " auth " ; // Optional. No password by default.
// Automatically get other nodes' info,
// and connect to every master node with a single connection.
RedisCluster cluster1 (connection_options);
ConnectionPoolOptions pool_options;
pool_options.size = 3 ;
// For each master node, maintains a connection pool of size 3.
RedisCluster cluster2 (connection_options, pool_options); You can also specify connection option with an URI. However, in this way, you can only use default ConnectionPoolOptions , ie pool of size 1, and CANNOT specify password.
// Specify a master node's host & port.
RedisCluster cluster3 ( " tcp://127.0.0.1:7000 " );
// Use default port, i.e. 6379.
RedisCluster cluster4 ( " tcp://127.0.0.1 " ); If you want to scale read by reading (possible stale) data from slave nodes, you can specifiy Role::SLAVE as the third parameter of RedisCluster 's constructor. In this case, redis-plus-plus will randomly pick a replica node for each master node of the cluster, and create a connection pool for the replica node.
RedisCluster cluster (connection_options, pool_options, Role::SLAVE);
auto val = cluster.get( " key " ); In this case, you can only send readonly commands to Redis Cluster. If you try to send a write command, eg set , hset , redis-plus-plus will throw an exception. Currently, redis-plus-plus doesn't handle this case, ie sending write command in Role::SLAVE mode, elegantly, and you might get some performance problem. So, NEVER send write command in Role::SLAVE mode. I'll fix this issue in the future.
NOTE : In Role::SLAVE mode, you don't need to manually send READONLY command to slave nodes. Instead, redis-plus-plus will send READONLY command to slave nodes automatically.
RedisCluster only works with tcp connection. It CANNOT connect to Unix Domain Socket. If you specify Unix Domain Socket in ConnectionOptions , it throws an exception.ConnectionOptions::db is ignored. As we mentioned above, RedisCluster 's interfaces are similar to Redis . It supports most of Redis ' interfaces, including the generic command interface (see Redis ' API Reference section for details), except the following:
PING , INFO . Since there's no key parameter, RedisCluster has no idea on to which node these commands should be sent. However there're 2 workarounds for this problem:
Redis object with that node's host and port, and use the Redis object to do the work.Redis RedisCluster::redis(const StringView &hash_tag) to create a Redis object with a hash-tag specifying the node. In this case, the returned Redis object creates a new connection to Redis server. NOTE : the returned Redis object, IS NOT THREAD SAFE! . Also, when using the returned Redis object, if it throws exception, you need to destroy it, and create a new one with the RedisCluster::redis method.Also you can use the hash tags to send multiple-key commands.
See the example section for details.
You can publish and subscribe messages with RedisCluster . The interfaces are exactly the same as Redis , ie use RedisCluster::publish to publish messages, and use RedisCluster::subscriber to create a subscriber to consume messages. See Publish/Subscribe section for details.
You can also create Pipeline and Transaction objects with RedisCluster , but the interfaces are different from Redis . Since all commands in the pipeline and transaction should be sent to a single node in a single connection, we need to tell RedisCluster with which node the pipeline or transaction should be created.
Instead of specifying the node's IP and port, RedisCluster 's pipeline and transaction interfaces allow you to specify the node with a hash tag . RedisCluster will calculate the slot number with the given hash tag , and create a pipeline or transaction with the node holding the slot.
Pipeline RedisCluster::pipeline ( const StringView &hash_tag, bool new_connection = true );
Transaction RedisCluster::transaction ( const StringView &hash_tag, bool piped = false , bool new_connection = true ); With the created Pipeline or Transaction object, you can send commands with keys located on the same node as the given hash_tag . See Examples section for an example.
NOTE : By default, Pipeline and Transaction will be created with a new connection. In order to avoid creating new connection, you can pass false as the last parameter. However, in this case, you MUST be very careful, otherwise, you might get bad performance or even dead lock. Please carefully check the related pipeline section before using this feature.
# include < sw/redis++/redis++.h >
using namespace sw ::redis ;
auto redis_cluster = RedisCluster( " tcp://127.0.0.1:7000 " );
redis_cluster.set( " key " , " value " );
auto val = redis_cluster.get( " key " );
if (val) {
std::cout << *val << std::endl;
}
// With hash-tag.
redis_cluster.set( " key{tag}1 " , " val1 " );
redis_cluster.set( " key{tag}2 " , " val2 " );
redis_cluster.set( " key{tag}3 " , " val3 " );
std::vector<OptionalString> hash_tag_res;
redis_cluster.mget({ " key{tag}1 " , " key{tag}2 " , " key{tag}3 " },
std::back_inserter (hash_tag_res));
redis_cluster.lpush( " list " , { " 1 " , " 2 " , " 3 " });
std::vector<std::string> list;
redis_cluster.lrange( " list " , 0 , - 1 , std::back_inserter(list));
// Pipeline.
auto pipe = redis_cluster.pipeline( " counter " );
auto replies = pipe.incr( " {counter}:1 " ).incr( " {counter}:2 " ).exec();
// Transaction.
auto tx = redis_cluster.transaction( " key " );
replies = tx.incr( " key " ).get( " key " ).exec();
// Create a Redis object with hash-tag.
// It connects to the Redis instance that holds the given key, i.e. hash-tag.
auto r = redis_cluster.redis( " hash-tag " );
// And send command without key parameter to the server.
r.command( " client " , " setname " , " connection-name " ); NOTE : By default, when you use RedisCluster::redis(const StringView &hash_tag, bool new_connection = true) to create a Redis object, instead of picking a connection from the underlying connection pool, it creates a new connection to the corresponding Redis server. So this is NOT a cheap operation, and you should try to reuse this newly created Redis object as much as possible. If you pass false as the second parameter, you can create a Redis object without creating a new connection. However, in this case, you should be very careful, otherwise, you might get bad performance or even dead lock. Please carefully check the related pipeline section before using this feature.
// This is BAD! It's very inefficient.
// NEVER DO IT!!!
// After sending PING command, the newly created Redis object will be destroied.
cluster.redis( " key " ).ping();
// Then it creates a connection to Redis, and closes the connection after sending the command.
cluster.redis( " key " ).command( " client " , " setname " , " hello " );
// Instead you should reuse the Redis object.
// This is GOOD!
auto redis = cluster.redis( " key " );
redis.ping();
redis.command( " client " , " setname " , " hello " );
// This is GOOD! Create `Redis` object without creating a new connection. Use it, and destroy it ASAP.
cluster.redis( " key " , false ).ping(); RedisCluster maintains the newest slot-node mapping, and sends command directly to the right node. Normally it works as fast as Redis . If the cluster reshards, RedisCluster will follow the redirection, and it will finally update the slot-node mapping. It can correctly handle the following resharding cases:
redis-plus-plus is able to handle both MOVED and ASK redirections, so it's a complete Redis Cluster client.
If master is down, the cluster will promote one of its replicas to be the new master. redis-plus-plus can also handle this case:
Since redis-plus-plus 1.3.13, it also updates the slot-node mapping every ClusterOptions::slot_map_refresh_interval time interval (by default, it updates every 10 seconds).
Redis Sentinel provides high availability for Redis. If Redis master is down, Redis Sentinels will elect a new master from slaves, ie failover. Besides, Redis Sentinel can also act like a configuration provider for clients, and clients can query master or slave address from Redis Sentinel. So that if a failover occurs, clients can ask the new master address from Redis Sentinel.
redis-plus-plus supports getting Redis master or slave's IP and port from Redis Sentinel. In order to use this feature, you only need to initialize Redis object with Redis Sentinel info, which is composed with 3 parts: std::shared_ptr<Sentinel> , master name and role (master or slave).
Before using Redis Sentinel with redis-plus-plus , ensure that you have read Redis Sentinel's doc.
You can create a std::shared_ptr<Sentinel> object with SentinelOptions .
SentinelOptions sentinel_opts;
sentinel_opts.nodes = {{ " 127.0.0.1 " , 9000 },
{ " 127.0.0.1 " , 9001 },
{ " 127.0.0.1 " , 9002 }}; // Required. List of Redis Sentinel nodes.
// Optional. Timeout before we successfully connect to Redis Sentinel.
// By default, the timeout is 100ms.
sentinel_opts.connect_timeout = std::chrono::milliseconds( 200 );
// Optional. Timeout before we successfully send request to or receive response from Redis Sentinel.
// By default, the timeout is 100ms.
sentinel_opts.socket_timeout = std::chrono::milliseconds( 200 );
auto sentinel = std::make_shared<Sentinel>(sentinel_opts); SentinelOptions::connect_timeout and SentinelOptions::socket_timeout CANNOT be 0ms, ie no timeout and block forever. Otherwise, redis-plus-plus will throw an exception.
See SentinelOptions for more options.
Besides std::shared_ptr<Sentinel> and master name, you also need to specify a role. There are two roles: Role::MASTER , and Role::SLAVE .
With Role::MASTER , redis-plus-plus will always connect to current master instance, even if a failover occurs. Each time when redis-plus-plus needs to create a new connection to master, or a connection is broken, and it needs to reconnect to master, redis-plus-plus will ask master address from Redis Sentinel, and connects to current master. If a failover occurs, redis-plus-plus can automatically get the address of the new master, and refresh all connections in the underlying connection pool.
Similarly, with Role::SLAVE , redis-plus-plus will always connect to a slave instance. A master might have several slaves, redis-plus-plus will randomly pick one, and connect to it, ie all connections in the underlying connection pool, connect to the same slave instance (check this discussion on why redis-plus-plus not connect to all slaves). If the connection is broken, while this slave instance is still an alive slave, redis-plus-plus will reconnect to this slave. However, if this slave instance is down, or it has been promoted to be the master, redis-plus-plus will randomly connect to another slave. If there's no slave alive, it throws an exception.
When creating a Redis object with sentinel, besides the sentinel info, you should also provide ConnectionOptions and ConnectionPoolOptions . These two options are used to connect to Redis instance. ConnectionPoolOptions is optional, if not specified, it creates a single connection the instance.
ConnectionOptions connection_opts;
connection_opts.password = " auth " ; // Optional. No password by default.
connection_opts.connect_timeout = std::chrono::milliseconds( 100 ); // Required.
connection_opts.socket_timeout = std::chrono::milliseconds( 100 ); // Required.
ConnectionPoolOptions pool_opts;
pool_opts.size = 3 ; // Optional. The default size is 1.
auto redis = Redis(sentinel, " master_name " , Role::MASTER, connection_opts, pool_opts); You might have noticed that we didn't specify the host and port fields for ConnectionOptions . Because, Redis will get these info from Redis Sentinel. Also, in this case, ConnectionOptions::connect_timeout and ConnectionOptions::socket_timeout CANNOT be 0ms, otherwise, it throws an exception. So you always need to specify these two timeouts manually.
After creating the Redis object with sentinel, you can send commands with it, just like an ordinary Redis object.
If you want to write to master, and scale read with slaves. You can use the following pattern:
auto sentinel = std::make_shared<Sentinel>(sentinel_opts);
auto master = Redis(sentinel, " master_name " , Role::MASTER, connection_opts, pool_opts);
auto slave = Redis(sentinel, " master_name " , Role::SLAVE, connection_opts, pool_opts);
// Write to master.
master.set( " key " , " value " );
// Read from slave.
slave.get( " key " );Since Redis 5.0, it introduces a new data type: Redis Stream . redis-plus-plus has built-in methods for all stream commands except the XINFO command (of course, you can use the Generic Command Interface to send XINFO command).
However, the replies of some streams commands, ie XPENDING , XREAD , are complex. So I'll give some examples to show you how to work with these built-in methods.
auto redis = Redis( " tcp://127.0.0.1 " );
using Attrs = std::vector<std::pair<std::string, std::string>>;
// You can also use std::unordered_map, if you don't care the order of attributes:
// using Attrs = std::unordered_map<std::string, std::string>;
Attrs attrs = { { " f1 " , " v1 " }, { " f2 " , " v2 " } };
// Add an item into the stream. This method returns the auto generated id.
auto id = redis.xadd( " key " , " * " , attrs.begin(), attrs.end());
// Each item is assigned with an id: pair<id, Optional<attributes>>.
// NOTE: the attribute part might be nil reply, check [this issue](https://github.com/sewenew/redis-plus-plus/issues/283) for detail.
using Item = std::pair<std::string, Optional<Attrs>>;
using ItemStream = std::vector<Item>;
// If you don't care the order of items in the stream, you can also use unordered_map:
// using ItemStream = std::unordered_map<std::string, Attrs>;
// Read items from a stream, and return at most 10 items.
// You need to specify a key and an id (timestamp + offset).
std::unordered_map<std::string, ItemStream> result;
redis.xread( " key " , id, 10 , std::inserter(result, result.end()));
// Read from multiple streams. For each stream, you need to specify a key and an id.
std::unordered_map<std::string, std::string> keys = { { " key " , id}, { " another-key " , " 0-0 " } };
redis.xread(keys.begin(), keys.end(), 10 , std::inserter(result, result.end()));
// Block for at most 1 second if currently there's no data in the stream.
redis.xread( " key " , id, std::chrono::seconds( 1 ), 10 , std::inserter(result, result.end()));
// Block for multiple streams.
redis.xread(keys.begin(), keys.end(), std::chrono::seconds( 1 ), 10 , std::inserter(result, result.end()));
// Read items in a range:
ItemStream item_stream;
redis.xrange( " key " , " - " , " + " , std::back_inserter(item_stream));
// Trim the stream to a given number of items. After the operation, the stream length is NOT exactly
// 10. Instead, it might be much larger than 10.
// `XTRIM key MAXLEN 10`
redis.xtrim( " key " , 10 );
// In order to trim the stream to exactly 10 items, specify the third argument, i.e. approx, as false.
// `XTRIM key MAXLEN ~ 10`
redis.xtrim( " key " , 10 , false );
// Delete an item from the stream.
redis.xdel( " key " , id);
// Create a consumer group.
redis.xgroup_create( " key " , " group " , " $ " );
// If the stream doesn't exist, you can set the fourth argument, i.e. MKSTREAM, to be true.
// redis.xgroup_create("key", "group", "$", true);
id = redis.xadd( " key " , " * " , attrs.begin(), attrs.end());
// Read item by a consumer of a consumer group.
redis.xreadgroup( " group " , " consumer " , " key " , " > " , 1 , std::inserter(result, result.end()));
using PendingItem = std::tuple<std::string, std::string, long long , long long >;
std::vector<PendingItem> pending_items;
// Get pending items of a speicified consumer.
redis.xpending( " key " , " group " , " - " , " + " , 1 , " consumer " , std::back_inserter(pending_items));
redis.xack( " key " , " group " , id);
redis.xgroup_delconsumer( " key " , " group " , " consumer " );
redis.xgroup_destroy( " key " , " group " );If you have any problem on sending stream commands to Redis, please feel free to let me know.
Redis Modules enrich Redis. However, redis-plus-plus does not have built-in support/method for these modules, although you can use the generic interface to send commands related to these modules.
The generic command interface uses the second argument as the key for hashing. If your custom command places the key at a different argument (ie: module-name create key1 arg1 arg2 ), and you are using the RedisCluster client, then it will fail to send the command to the correct Redis instance. In this case you could use the following work-around:
auto redis_cluster = RedisCluster( " tcp://127.0.0.1:6379 " );
std::vector<std::string> raw_cmd;
raw_cmd.push_back( " module-name " );
raw_cmd.push_back( " create " );
raw_cmd.push_back( " key1 " );
raw_cmd.push_back( " arg1 " );
raw_cmd.push_back( " arg2 " );
// create it with a connection from the underlying connection pool
auto redis = redis_cluster.redis( " key1 " , false );
redis.command< void >(raw_cmd.begin(), raw_cmd.end());Fortunately, @wingunder did a great job to make the work easier. He wrote redis-plus-plus-modules, which is a header only project that has built-in support for some popular modules. If you need to work with Redis Modules, you should have a try.
@wingunder also contributes a lot to redis-plus-plus . Many thanks to @wingunder!
redis-plus-plus also supports async interface, however, async support for Transaction is still on the way.
The async interface depends on third-party event library, and so far, only libuv is supported.
You must install libuv (eg apt-get install libuv1-dev ) before install hiredis and redis-plus-plus . The required libuv version is 1.x .
hiredis v1.0.0's async interface is different from older version, and redis-plus-plus only supports hiredis v1.0.0 or later. So you need to ensure you've installed the right version of hiredis before installing redis-plus-plus . Also, you should NEVER install multiple versions of hiredis , otherwise, you'll get some wired problems. If you already installed an older version, remove it, and install a newer version.
When installing redis-plus-plus , you should specify the following command line option: -DREDIS_PLUS_PLUS_BUILD_ASYNC=libuv .
cmake -DCMAKE_PREFIX_PATH=/installation/path/to/libuv/and/hiredis -DREDIS_PLUS_PLUS_BUILD_ASYNC=libuv ..
make
make install The async interface is similar to sync interface, except that you should include sw/redis++/async_redis++.h , and define an object of sw::redis::AsyncRedis , and the related methods return Future object (so far, only std::future and boost::future are supported, support for other implementations of future is on the way).
However, C++'s support for continuation and executor is not done yet, so the async interface also supports the old callback way. The following is the callback interface:
template <typename ReplyType>
void (sw::redis::Future<ReplyType> &&fut);
In the callback, in order to get the reply, you need to call sw::redis::Future<ReplyType>::get() . If something bad happened, get throws exception. So you need to catch possible exception in the callback. The callback runs in the underlying event loop thread, so DO NOT do slow operations in the callback, otherwise, it blocks the event loop and hurts performance.
NOTIZ :
AsyncRedis alive before all callbacks have been executed (with some synchronization work). Because, once AsyncRedis is destroyed, it will stop the underlying event loop. And any commands that haven't sent to Redis yet, might fail. These notes also work with AsyncRedisCluster .
# include < sw/redis++/async_redis++.h >
ConnectionOptions opts;
opts.host = " 127.0.0.1 " ;
opts.port = 6379 ;
ConnectionPoolOptions pool_opts;
pool_opts.size = 3 ;
auto async_redis = AsyncRedis(opts, pool_opts);
Future<string> ping_res = async_redis.ping();
// Async interface returning Future object.
Future< bool > set_res = async_redis.set( " key " , " val " );
// Async interface with callback.
async_redis.set( " key " , " val " ,
[](Future< bool > &&fut) {
try {
auto set_res = fut. get ();
} catch ( const Error &err) {
// handle error
}
});
Future<Optional<string>> get_res = async_redis.get( " key " );
async_redis.get( " key " , [](Future<OptionalString> &&fut) {
try {
auto val = fut. get ();
if (val)
cout << *val << endl;
else
cout << " not exist " << endl;
} catch ( const Error &err) {
// handle error
}
});
unordered_map<string, string> m = {{ " a " , " b " }, { " c " , " d " }};
Future< void > hmset_res = async_redis.hmset( " hash " , m.begin(), m.end());
auto hgetall_res = async_redis.hgetall<std::unordered_map<std::string, std::string>>( " hash " );
cout << ping_res.get() << endl;
cout << set_res.get() << endl;
auto val = get_res.get();
if (val)
cout << *val << endl;
else
cout << " not exist " << endl;
hmset_res.get();
for ( const auto &ele : hgetall_res.get())
cout << ele.first << " t " << ele.second << endl;
// Generic interface.
// There's no *AsyncRedis::client_getname* interface.
// But you can use *Redis::command* to get the client name.
auto getname_res = async_redis.command<OptionalString>( " client " , " getname " );
val = getname_res.get();
if (val) {
std::cout << *val << std::endl;
}
async_redis.command<OptionalString>( " client " , " getname " ,
[](Future<OptionalString> &&fut) {
try {
auto val = fut. get ();
} catch ( const Error &e) {
// handle error
}
});
async_redis.command< long long >( " incr " , " number " ,
[](Future< long long > &&fut) {
try {
cout << fut. get () << endl;
} catch ( const Error &e) {
// handle error
}
});Aysnc interface also supports Redis Sentinel.
# include < sw/redis++/async_redis++.h >
SentinelOptions sentinel_opts;
sentinel_opts.nodes = {
{ " 127.0.0.1 " , 8000 },
{ " 127.0.0.1 " , 8001 },
{ " 127.0.0.1 " , 8002 }
};
sentinel_opts.connect_timeout = std::chrono::milliseconds( 100 );
sentinel_opts.socket_timeout = std::chrono::milliseconds( 100 );
auto sentinel = std::make_shared<AsyncSentinel>(sentinel_opts);
onnectionOptions connection_opts;
connection_opts.connect_timeout = std::chrono::milliseconds( 100 ); // Required.
connection_opts.socket_timeout = std::chrono::milliseconds( 100 ); // Required.
ConnectionPoolOptions pool_opts;
pool_opts.size = 3 ; // Optional. The default size is 1.
// Connect to master node.
AsyncRedis redis (sentinel, " mymaster " , Role::MASTER, connection_opts, pool_opts);
// The following code randomly connects to one of the slave nodes.
// AsyncRedis redis(sentinel, "mymaster", Role::SLAVE, connection_opts, pool_opts);
redis.set( " key " , " value " );
auto value = redis.get( " key " ).get(); The async support for sentinel is similar with the sync one, except that you need to create an AsyncSentinel object instead of a Sentinel object. Check Redis Sentinel for more details on SentinelOptions , ConnectionOptions and Role .
Aysnc interface also supports Redis Cluster. Instead of AsyncRedis , you need to create an AsyncRedisCluster object.
ConnectionOptions opts;
opts.host = " 127.0.0.1 " ;
opts.port = 6379 ;
ConnectionPoolOptions pool_opts;
pool_opts.size = 3 ;
auto async_cluster = AsyncRedisCluster(opts, pool_opts);
Future< bool > set_res = async_cluster.set( " key " , " val " );
Future<Optional<string>> get_res = async_cluster.get( " key " );
auto mget_res = async_cluster.mget<std::vector<OptionalString>>({ " {hashtag}key1 " , " {hashhag}key2 " , " {hashtag}key3 " });
unordered_map<string, string> m = {{ " a " , " b " }, { " c " , " d " }};
Future< void > hmset_res = async_redis.hmset( " hash " , m.begin(), m.end());
// Create an AsyncRedis object with hash-tag, so that we can send commands that has no key.
// It connects to Redis instance that holds the given key, i.e. hash-tag.
auto r = async_cluster.redis( " hash-tag " );
Future<string> ping_res = r.command<string>( " ping " ); NOTE : By default, when you use AsyncRedisCluster::redis(const StringView &hash_tag, bool new_connection = true) to create an AsyncRedis object, instead of picking a connection from the underlying connection pool, it creates a new connection to the corresponding Redis server. So this is NOT a cheap operation, and you should try to reuse this newly created AsyncRedis object as much as possible. If you pass false as the second parameter, you can create a AsyncRedis object without creating a new connection. However, in this case, you should be very careful, otherwise, you might get bad performance or even dead lock. Please carefully check the related pipeline section before using this feature. Also the returned AsyncRedis object is NOT thread-safe, and if it throws exception, you need to destroy it, and create a new one with the AsyncRedisCluster::redis method.
NOTE : I'm not quite satisfied with the interface of AsyncSubscriber . If you have a better idea, feel free to open an issue for discussion.
You can use AsyncSubscriber to subscribe to channels or patterns asynchronously. The interface is similar to Subscriber , except a few differences (please read Publish/Subscribe section first):
consume method for AsyncSubscriber . Once you setup callbacks, and subscribe to some channel, redis-plus-plus will run callbacks with received messages in the underlying event loop.AsyncSubscriber::subscribe , AsyncSubscriber::psubscriber and other related methods return Future<void> . You can use it to check if the subscription has been sent.AsyncSubscriber::on_error(ErrCallback &&) to handle possible errors. The error callback interface is: void (std::exception_ptr err) , and you can get the exception with given exception pointer. AsyncSubscriber is NOT thread-safe. If you want to call its member functions in multi-thread environment, you need to synchronize between threads manually.AsyncSubscriber is destroyed, the underlying connection will be closed. If there're still channels or patterns not unsubscribed, the error callback will be called. In order to avoid it, you need to call AsyncSubscriber::unsubscribe() or AsyncSubscriber::punsubscribe() to unsubscribe all channels or patterns before destroying AsyncSubscriber . NOTE: this behavior might be changed in the future, ie we'll unsubscribe channels and patterns in the destructor of AsyncSubscriber . The following example is a common pattern to use AsyncSubscriber :
// Create an `AsyncSubscriber`. You can create it with either an `AsyncRedis` or `AsyncRedisCluster` object.
auto sub = async_redis.subscriber();
// Set callbacks.
sub.on_message([](std::string channel, std::string msg) {
// Process message of MESSAGE type.
});
sub.on_pmessage([](std::string pattern, std::string channel, std::string msg) {
// Process message of PMESSAGE type.
});
sub.on_meta([](Subscriber::MsgType type, OptionalString channel, long long num) {
// Process message of META type.
});
// You need to set error callback to handle error.
sub.on_error([](std::exception_ptr e) {
try {
std::rethrow_exception (e);
} catch ( const std:: exception &err) {
std::cerr << " err: " << err. what () << std::endl;
}
});
// Subscribe to channels and patterns.
Future< void > fut1 = sub.subscribe( " channel " );
Future< void > fut2 = sub.psubscribe( " pattern1* " );
// Once you call `subscribe` or `psubscribe`, callbacks will be run in the underlying
// event loop automatically. NOTE : The following is an experimental feature, and might be modified or abandaned in the future.
By default, AsyncRedis and AsyncRedisCluster create a default event loop, and runs the loop in a dedicated thread to handle read and write operations. However, you can also share the underlying event loop with multiple AsyncRedis and AsyncRedisCluster objects. In order to do that, you need to create a std::shared_ptr<EventLoop> , and pass it to the constructors of AsyncRedis and AsyncRedisCluster .
auto event_loop = std::make_shared<EventLoop>();
auto redis = AsyncRedis(connection_opts, pool_opts, loop);
auto cluster = AsyncRedisCluster(connection_opts, pool_opts, Role::MASTER, loop); NOTE : You must ensure event_loop lives longer than AsyncRedis and AsyncRedisCluster objects.
Unfortunately, std::future doesn't support continuation so far, which is inconvenient. However, some other libraries, eg boost and folly, have continuation support.
By default, redis-plus-plus returns std::future for async interface. However, you can also make it return boost::future by specifying -DREDIS_PLUS_PLUS_ASYNC_FUTURE=boost when running cmake ( folly and other libraries might be supported in the future). Of course, in this case, you need to install Boost first (the minimum version requirement for Boost is 1.55.0 ).
cmake -DREDIS_PLUS_PLUS_BUILD_ASYNC=libuv -DREDIS_PLUS_PLUS_ASYNC_FUTURE=boost ..NOTE : When building your application code, don't forget to link boost related libs, eg -lboost_thread, -lboost_system.
Then you can take advantage of boost::future 's continuation support:
# include < sw/redis++/async_redis++.h >
ConnectionOptions opts;
opts.host = " 127.0.0.1 " ;
opts.port = 6379 ;
auto redis = AsyncRedis(opts);
auto fut = redis.get( " key " ).then([](sw::redis::Future<sw::redis::Optional<std::string>> fut) {
auto val = fut. get ();
if (val) cout << *val << endl;
});
// Do other things
// Wait for the continuation finishes.
fut.get();You can also use a thread pool to run the continuation:
# define BOOST_THREAD_PROVIDES_EXECUTORS
// You might also need to `#define BOOST_THREAD_USES_MOVE` with some version of Boost.
// See [this issue](https://github.com/sewenew/redis-plus-plus/issues/272) for detail.
# include < sw/redis++/async_redis++.h >
# include < boost/thread/executors/basic_thread_pool.hpp >
boost::executors::basic_thread_pool pool ( 3 );
auto fut = redis.get( " key " ).then(pool,
[](sw::redis::Future<sw::redis::Optional<std::string>> fut) {
auto val = fut. get ();
if (val) cout << *val << endl;
});
// Do other things
fut.get();redis-plus-plus also supports coroutine interface, however, coroutine support for Subscriber and Transaction is still on the way.
NOTE : Coroutine support is still experimental, and the interface might be changed in the future.
The coroutine interface depends on async interface, which depends on third-party event library. So you need to install libuv first, and hiredis v1.0.0 or later. Check async interface for detail.
When installing redis-plus-plus , you should specify the following command line options: -DREDIS_PLUS_PLUS_BUILD_ASYNC=libuv , -DREDIS_PLUS_PLUS_BUILD_CORO=ON and -DREDIS_PLUS_PLUS_CXX_STANDARD=20 .
cmake -DCMAKE_PREFIX_PATH=/installation/path/to/libuv/and/hiredis -DREDIS_PLUS_PLUS_CXX_STANDARD=20 -DREDIS_PLUS_PLUS_BUILD_ASYNC=libuv -DREDIS_PLUS_PLUS_BUILD_CORO=ON ..
make
make install The coroutine interface is similar to sync interface, except that you should include sw/redis++/co_redis++.h , and define an object of sw::redis::CoRedis or sw::redis::CoRedisCluster , and the related methods return sw::redis::CoRedis::Awaiter<Result> or sw::redis::CoRedisCluster::Awaiter<Result> object.
NOTIZ :
# include < sw/redis++/co_redis++.h >
# include < cppcoro/task.hpp >
# include < cppcoro/sync_wait.hpp >
ConnectionOptions opts;
opts.host = " 127.0.0.1 " ;
opts.port = 6379 ;
ConnectionPoolOptions pool_opts;
pool_opts.size = 3 ;
// `CoRedisCluster` has similar inteface as `CoRedis`.
// auto co_redis_cluster = CoRedisCluster(opts, pool_opts);
auto co_redis = CoRedis(opts, pool_opts);
cppcoro::sync_wait ([&co_redis]() -> cppcoro::task<> {
try {
co_await co_redis. set ( " key " , " val " );
auto val = co_await co_redis. get ( " key " );
if (val)
cout << *val << endl;
else
cout << " not exist " << endl;
co_await co_redis. command < long long >( " incr " , " num " );
val = co_await co_redis. command <OptionalString>( " get " , " num " );
} catch ( const Error &e) {
cout << e. what () << endl;
}
}());Coroutine interface also supports Redis Sentinel.
# include < sw/redis++/co_redis++.h >
SentinelOptions sentinel_opts;
sentinel_opts.nodes = {
{ " 127.0.0.1 " , 8000 },
{ " 127.0.0.1 " , 8001 },
{ " 127.0.0.1 " , 8002 }
};
sentinel_opts.connect_timeout = std::chrono::milliseconds( 100 );
sentinel_opts.socket_timeout = std::chrono::milliseconds( 100 );
auto sentinel = std::make_shared<CoSentinel>(sentinel_opts);
onnectionOptions connection_opts;
connection_opts.connect_timeout = std::chrono::milliseconds( 100 ); // Required.
connection_opts.socket_timeout = std::chrono::milliseconds( 100 ); // Required.
ConnectionPoolOptions pool_opts;
pool_opts.size = 3 ; // Optional. The default size is 1.
// Connect to master node.
CoRedis co_redis (sentinel, " mymaster " , Role::MASTER, connection_opts, pool_opts);
// The following code randomly connects to one of the slave nodes.
// CoRedis co_redis(sentinel, "mymaster", Role::SLAVE, connection_opts, pool_opts);
cppcoro::sync_wait ([&co_redis]() -> cppcoro::task<> {
try {
auto val = co_await co_redis. get ( " key " );
if (val)
cout << *val << endl;
else
cout << " not exist " << endl;
} catch ( const Error &e) {
cout << e. what () << endl;
}
}()); The coroutine support for sentinel is similar with the sync one, except that you need to create an CoSentinel object instead of a Sentinel object. Check Redis Sentinel for more details on SentinelOptions , ConnectionOptions and Role .
We can create many interesting data structures and algorithms based on Redis, such as Redlock. We call these data structures and algorithms as Redis Patterns . redis-plus-plus will support some of these patterns.
NOTE : These patterns will be first implemented on the patterns branch. I'd like to hear your feedback on the API of these patterns, and when these APIs become stable, I'll merge the code into the master branch. So APIs on the patterns branch are NOT stable, and might be changed in the future.
Redlock is a distributed lock based on Redis. Thanks to @wingunder's suggestion, redis-plus-plus supports Redlock now. @wingunder and I made two different implementation of Redlock: one based on Lua script, and the other based on transaction. The Lua script version should be faster, and also it has many other parameters to control the behavior. However, if you are not allowed to, or don't want to run Lua scripts inside Redis, you could try using the transaction version.
Also there's a high level API, which works like std::mutex . With this high level API, you don't need to manually extend the lock, instead, the lock will be automatically extened by redis-plus-plus.
The basic idea of acquiring a Redlock is setting a key in Redis if the key does not exist. Since Redis operation is atomic, when mutiple clients acquire the same lock, ie setting the same key if it does not exist, only one client wins, and others will find the key has already been set. So only one client can acquire the lock, and others have to wait and try again.
When setting the key, we also need to set a TTL/expireation for the key. Otherwise, if the winning client crashes, the lock cannot be acquired by others forever. However, it also brings a new problem. Since the key has a TTL, once you acquire the lock, you must ensure all code in critical section must be finished before the key expires. Otherwise, other clients might acquire the lock successfully when you are still running critical section code (ie more than one clients acquire the lock successfully). So when you run critical section code, you have to check if the key is going to be expired and extend the lock (ie extending the TTL) before key expires, from time to time.
Also, in order to make the algorithm more robust, normally we need to set key on multiple independent stand-alone Redis (not Redis Cluster).
There're still more details on the mechanism of Redlock. Please read Redlock's doc for more info, before using it.
The high level API is quite simple. It works like a std::mutex , and can be used with std::lock_guard and std::unique_lock . Also it can automatically extend the lock before the key expires. So that user code doesn't need to extend the lock manually. In order to use Redlock, you can create a RedMutex object with the following parameters:
Redis instances: There're two versions of Redlock, ie single instance version and multiple instances version. The multiple instances version is more robust.RedMutex should be created with the same resource id.RedMutexOptions (optional): Some options to control the behavior of RedMutex . If not specified, default options will be used. Check below for more detail.LockWatcher (optional): A watcher which will automatically extend the lock before it expires. So that you don't need to manually check if the lock has been expired. If no watcher is specified (the default behavior), redis-plus-plus will create a one for this Redlock. Check below for more detail. class RedMutex {
public:
RedMutex(std::initializer_list<std::shared_ptr<Redis>> masters,
const std::string &resource,
std::function<void (std::exception_ptr)> auto_extend_err_callback = nullptr,
const RedMutexOptions &opts = {},
const std::shared_ptr<LockWatcher> &watcher = nullptr);
void lock();
bool try_lock();
void unlock();
};
As we mentioned the high level API can automatically extend the lock. However, we might fail to extend the lock, eg connection to Redis is broken. In that case, the auto_extend_err_callback will be called, so that the application can be notified that the lock might no longer be locked, and stop running code in critical section.
The following is the prototype of error callback.
void (std::exception_ptr err);
If error callback is not set (the default behavior), the error will be ignored. And you're on risk of running critical section code with multiple clients.
struct RedMutexOptions {
std::chrono::milliseconds ttl;
std::chrono::milliseconds retry_delay;
bool scripting = true;
};
ttl , otherwise, you might fail to lock or fail to extend the lock.RedMutex::lock repeat trying to lock until it acquires the lock. If it fails, it wait retry_delay before the next retrying. 100 milliseconds by default. LockWatcher watches RedMutex , and try to extend the lock from time to time. You can construct RedMutex with a std::shared_ptr<LockWatcher> , so that it will watch the corresponding Redlock. LockWatcher does the work in a background thread. So creating a LockWatcher object also creates a std::thread . If you want to avoid creating multiple threads, you can construct multiple RedMutex with the same std::shared_ptr<LockWatcher> .
If you don't specify LockWatcher , RedMutex will create one (the default behavior), and start a thread. Although it's expensive to create thread, it's still quite cheap compared to acquiring a distributed lock.
RedMutex is NOT reentrant. If you try to lock a mutex which has already been locked by the current thread, the behavior is undefined.# include < memory >
# include < sw/redis++/redis++.h >
# include < sw/redis++/patterns/redlock.h >
auto redis = std::make_shared<Redis>( " tcp://127.0.0.1 " );
auto redis1 = std::make_shared<Redis>( " tcp://127.0.0.1:7000 " );
auto redis2 = std::make_shared<Redis>( " tcp://127.0.0.1:7001 " );
auto redis3 = std::make_shared<Redis>( " tcp://127.0.0.1:7002 " );
try {
{
// Create a `RedMutex` with a single stand-alone Redis and default settings.
RedMutex mtx (redis, " resource " );
std::lock_guard<RedMutex> lock (mtx);
}
{
// Create a `RedMutex` with multiple stand-alone Redis and default settings.
RedMutex mtx ({redis1, redis2, redis3}, " resource " );
std::lock_guard<RedMutex> lock (mtx);
}
{
RedMutexOptions opts;
opts. ttl = std::chrono::seconds ( 5 );
auto watcher = std::make_shared<LockWatcher>();
// Create a `RedMutex` with auto_extend_err_callback and other options.
RedMutex mtx ({redis1, redis2, redis3}, " resource " ,
[](std::exception_ptr err) {
try {
std::rethrow_exception (err);
} catch ( const Error &e) {
// Notify application code that the lock might no longer be locked.
}
},
opts, watcher);
std::unique_lock<RedMutex> lock (mtx, std::defer_lock);
lock. lock ();
lock. unlock ();
lock. try_lock ();
}
} catch ( const Error &err) {
// handle error.
} // Lua script version:
{
RedLockMutex mtx({redis1, redis2, redis3}, "resource");
// Not locked.
RedLock<RedLockMutex> lock(mtx, std::defer_lock);
// Try to get the lock, and keep 30 seconds.
// It returns the validity time of the lock, i.e. the lock is only
// valid in *validity_time*, after that the lock might be acquired by others.
// If failed to acquire the lock, throw an exception of Error type.
auto validity_time = lock.try_lock(std::chrono::seconds(30));
// Extend the lock before the lock expired.
validity_time = lock.extend_lock(std::chrono::seconds(10));
// You can unlock explicitly.
lock.unlock();
} // If unlock() is not called, the lock will be unlocked automatically when it's destroied.
// Transaction version:
{
RedMutex mtx({redis1, redis2, redis3}, "resource");
RedLock<RedMutex> lock(mtx, std::defer_lock);
auto validity_time = lock.try_lock(std::chrono::seconds(30));
validity_time = lock.extend_lock(std::chrono::seconds(30));
// You can unlock explicitly.
lock.unlock();
}
hset related methods return long long instead of bool . redis-plus-plus is written by sewenew, who is also active on StackOverflow.
Many thanks to all contributors of redis-plus-plus , especially @wingunder.